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A complete convergence theorem for the ¢-voter model
and other voter model perturbations in two dimensions
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Abstract

The g-voter model is a spin-flip system in which the rate of flipping to type 7 is given by
the ¢qth power of the proportion of nearest neighbours in type ¢ fori = 0,1. If g = 1 it
reduces to the classical voter model. We show that in the critical 2-dimensional case,
for ¢ < 1 and close enough to 1, for any initial state as ¢t — oo the system converges
weakly to a mixture of all 0’s, all 1’s, and a unique invariant law which contains
infinitely many sites of both types. This follows as a special case of a general theorem
which proves a similar “complete convergence theorem” for cancellative, monotone,
finite range voter model perturbations on Z? providing a certain parameter, O3, is
strictly positive. Similar results follow for the affine and geometric voter models and
Lotka-Volterra models, all for parameter values close to that giving the voter model.
This kind of asymptotic behavior is quite different from that of the 2-dimensional voter
model itself, which undergoes clustering, and converges to a mixture of all 0’s and all
1’s.

The above parameter ©3 has an explicit expression in terms of asymptotic coalesc-
ing probabilities of 2-dimensional random walk, and we give a rather simple sufficient
condition for it to be strictly positive. An important step in the proof is to establish
weak convergence of the rescaled spin-flip systems to super-Brownian motion with
drift ©3. In fact, a convergence result is proved under weaker hypotheses which
includes all known such results for 2-dimensional voter model perturbations and a
number of new ones, including a rescaled limit theorem for the g-voter model where
q T 1 with the rescaling.
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The g-voter model and voter model perturbations in two dimensions

1 Introduction and main results

1.1 The ¢-voter model

To define the model, let ¢ > 0 and let N” C Z? be a non-empty finite symmetric (about
the origin) set not containing 0 such that the uniform distribution on N is an irreducible
kernel (the group generated by A is Z%), and for some o2 > 0,

Zzzz]/v\/\ :51']’0'2 for all Z,jgd (1.1)
zEN

Here |N| is the cardinality of N'. We call such an N a neighbourhood, and the elements
of NV, neighbours of 0. Note that the symmetry and irreducibility of A imply

|NV| > 2d and is even for any neighbourhood V. (1.2)

For z € Z%, x + N is the set of neighbours of z. In the ¢-voter model the state at time ¢
is & : Z¢ — {0, 1}, where & (z) is the opinion of a voter at x at time ¢. The rate at which
the voter at x changes opinion is the ¢g-th power of the fraction of its neighbours with the
opposite opinion. More formally, if ¢ € {0,1}%" and

yeN

and ¢(9 is defined by ~
D (x,€) = E(w) fi(2,€) + £(2) f§ (),

then the g-voter model &, is the spin-flip process with rate function ¢(? (see Theorem B.3
in [25]). Throughout we will use the notation

Ezl_gu

and if ¢ = 0, 07 := 0 in the above. The well-studied voter model is obtained by taking
q = 1, in which case we will write ¢'"(z, £) for ¢V (z, £).

The g-voter model was introduced by Nettle in [28] and also used by Abrams and
Strogatz in [3] as a model of language death. The model, along with many variations
of it, has been studied in the physics literature (e.g., see [1], [2], [22], [26], [30], [32])
Rigorous results for the model defined on large torii in Z%, d > 3 for ¢ close to 1 have
been obtained by Agarwal, Simper and Durrett in [4]. Our goal is to study the model on
Z? in the mathematically critical, and biologically important, two-dimensional case, with
q close to 1 and ¢ < 1. The methods we use to study this model will lead to some general
results for a family of two-dimensional spin-flip processes.

We let |{| = >, &(z), and say that a probability measure v on {0, 1}%° has the
coexistence property if

V(€] = ¢ = 00) =

A translation invariant probability v on {0, I}Zd has density p € [0,1] iff v(£(0) =1) =p
In the case d > 3, it is well known that the voter model has a one-parameter family of
translation invariant stationary distributions indexed by density, {1u9,0 < 8 < 1}, such
that for a wide class of initial laws with a given density, 0, the voter model converges
in law as t — oo to the corresponding py (see Chapter V of [24]). In particular, density
is preserved over time. For ¢ < 1, the flip rates to 1’s say, are increased relative to
the voter model by a factor of fffl, and so one is reinforcing the flip rates to locally
rare types. That this effect strongly influences the ergodic behavior of the model is
shown in Theorem 1.3 of [4], which considers a sequence of ¢,-voter models §§"> on
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torii in Z3 of side length 7, ¢,, T 1. That result shows that for an initial sequence of laws
with any fixed density in (0,1), with an appropriate time rescaling, the density of 515")
approaches 1/2 and stays close to 1/2 for at least polynomially (in n) long times. We will
refine this for |[V| < 8 (and in particular for the nearest neighbour setting in d = 3,4)
for ¢ < 1, sufficiently close to one, by showing the existence of a translation invariant
stationary distribution v;,, with the coexistence property and density 1/2 to which
the ¢-voter model converges weakly starting from any initial law with the coexistence
property. See Theorem 1.1 where a slightly stronger “complete convergence" result is
proved). In particular vy, is the unique stationary law with the coexistence property
(see Corollary 1.2).

Perhaps more interesting, such a convergence theorem also holds in two dimensions,
again for |[N| < 8, and so, in particular, for the nearest neighbour case (see again
Theorem 1.1). Recall that for d = 2, the voter model exhibits clustering, that is, it
converges weakly to a mixture of all zeros and all ones as ¢ tends to infinity. Dynamically,
a typical site becomes part of a growing cluster of the same type as ¢ becomes large.
The actual type will change back and forth as time evolves and the clusters grow. A
quantitative description of this dynamical clustering may be found in [8]. This clustering
behaviour in two dimensions is typical of branching population models such as super-
Brownian motion [15] or discrete time branching systems [23]. In these cases there is
local extinction for large time and the mass becomes concentrated on larger and larger
clumps separated by greater and greater distances. As the two-dimensional case is
of particular importance in population modelling this failure to converge to any local
equilibrium is referred to as the “pain in the torus". See [19] where a closely related
model exhibiting the above clumping behaviour is dismissed as being “biologically
irrelevant". The fact that, for any ¢ < 1 and close to 1, the ¢g-voter model converges to an
essentially unique equilibrium is, we believe, of some general interest. Other interesting
examples of such convergence results which include lower dimensions (d < 2), are due to
Handjani [21] for the threshold voter model, corresponding to ¢ = 0 (excluding only the
one-dimensional nearest neighbour case where coexistence fails), the present authors
[13] for the symmetric two-dimensional Lotka-Volterra model, and Sturm and Swart
[31] for the one-dimensional “rebellious voter model" for sufficiently small competition
parameter. Results and methods from the first two works will play a role here.

Our convergence results, and the coexistence results in [4], both require ¢ close
enough to 1. This is counter-intuitive because taking ¢ smaller should only increase
the advantage of locally rare types, described above. This restriction on ¢ is due
to the perturbative nature of both arguments which use the theory of voter model
perturbations. This refers to the fact that the models approach the voter model as a
parameter approaches a particular value-in this case as ¢ 1 1. [4] uses general results
for voter model perturbations from [7] which require d > 3, as these results rely on
rapid local convergence to the appropriate invariant law of the voter model. The two-
dimensional case is more involved but, as was noted above, a particular class of voter
model perturbations, Lotka-Volterra models, were analyzed (again using perturbative
methods) for d = 2 in [12] and [9]. The methodologies in this latter paper will be
extended here to show that rescaled ¢-voter models in which ¢ 1 1 as well, converge
to a two-dimensional super-Brownian motion with a positive drift (see Section 1.5).
The positivity of the drift will be critical to show that the process exhibits long-term
coexistence. The description of the drift in terms of the asymptotics of long-time non-
coalescing probabilities for two-dimensional random walks (see (1.22) in Section 1.3) is
therefore important.

When ¢ > 1 the above intuitive argument now goes in the other direction; the flip rates
to 1’s are multiplied by a factor of f{ ~! and so, relatively speaking, one is reinforcing
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flip rates to locally dominant types. As a result we now expect a type of founder control,
where one type or another will take over, with probabilities depending on the initial
configuration. The tools for proving such a result for ¢ > 1 and close enough to 1 in two
dimensions, or even for d > 3, do not seem to be currently available.

In addition to being a voter model perturbation (see Section 3.2) the other key
properties of the g-voter model used in the proof are monotonicity (see the definition in
Section 1.2) and the cancellative property (see (3.1) in Section 3.1), which implies it has
an annihilating dual. The fact that the g-voter model has no coalescing dual (see Section
4 of Chapter III in [24]) was established in [4], where it was shown that that the g-voter
model (¢ # 1) is not additive.

Our “complete convergence" theorem for g-voter models is obtained as a corollary
of a general result for two-dimensional monotone, cancellative finite range voter model
perturbations when (the natural extension of) the above drift parameter is positive (see
Theorem 1.9 below). This result will also imply such a “complete convergence" theorem
with coexistence for (two-dimensional) affine voter models, geometric voter models and
the aforementioned Lotka-Volterra models, for appropriate choices of parameter (see
the examples in Section 3.2 and then Theorems 5.6, 5.7 and 5.8). We note that no
restrictions on |A| are required for these three models or for Theorem 1.9 to hold. The
Lotka-Volterra result was first proved in [13], while the other applications are new.

1.2 A complete convergence theorem for the ¢-voter model

Assume first ¢(x, £) is a rate function satisfying condition (B4) of [25] (see (4.3) below),
and so by Theorem B3 of that reference is the rate function of a unique spin flip system
& starting in state {, under P . Define the hitting times 7g = inf{t > 0: {; = 0} and
71 = inf{t > 0: & = 1}. We identify a random vector with its probability law, as usual,
and introduce the probabilities

Bo(6o) = Peo (g < 00),  B1(€0) = Po(17 < 0), Boo(é0) = Peo (19 =71 = 0).

By standard arguments (see (1.8) of [13]),

Bo(€n) = 0if [€o| = 00, B1(&) = 0if |§o| = oo, and hence s (£n) = 1 if |&| = [€o| = oo.
(1.3)
Recall that a spin-flip process with rate function c(z, &) is monotone iff for every £ < ¢
(this means {(x) < {(x) for all x),

c(z,&) > c(x,§) if {(x) = £(x) =0,
c(z,§) < c(z,§) if{(x) = &(x) =1,

We assume throughout that 0 < ¢ < 1 and note that clearly, for all such g,

z,§
z,§

the ¢g-voter model is monotone. (1.4)

We let = denote weak convergence of probability laws. A probability v on {0, l}Zd is
symmetric iff v(§ € -) = v(£ € ). Both 0 and 1 (the configurations of all 0’s and all 1’s,
respectively) are obviously traps for the ¢-voter model.

Theorem 1.1. Assume |[N| < 8 and d = 2,3 or 4. There exists 0 < q. < 1 such that for
qc < q < 1 there is a translation invariant symmetric stationary distribution v, , with

density 1/2 satisfying the coexistence property, and such that for all initial £, € {0, 1}Zd,

& = Bo(&0)dg + Boo(&0)vij2 + B1(&0)dq  ast — oo, (1.5)

where 5+ (§o) > 0 unless & is one of the fixed points, 0 or 1.
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We will state Theorem 1.1 more compactly by saying that for ¢. < ¢ < 1 the com-
plete convergence theorem with coexistence (CCT) holds for the gq-voter model. As an
immediate corollary we have a complete description of all invariant laws.

Corollary 1.2. For d, N, and q. as in Theorem 1.1, and q. < q < 1, vy, is the only
invariant distribution with the coexistence property, and {1, /2,(50,(51} are the only
extremal invariant distributions.

Remark 1.3. Note that the hypotheses of the above results are satisfied when N is the
set of nearest neighbours in Z% and 2 < d < 4. They also hold for d = 2 when A is the
unit sphere in Z? in the L> norm (|N| = 8). Clearly the restriction |[\| < 8 forces d < 4
by (1.2).

The g-voter model is a nonlinear voter model as defined in [5]. These are spin-flip
processes where the rate of flipping depends only on the number of sites of the opposite
type in . The cancellative property is defined in Section III.4 of [24] and discussed in
Section 3.1 below. It is verified for the g-voter model in Lemma 3.3 when |A] < 8 and
q € (ge, 1) using a criteria from [5] developed for nonlinear voter models (Proposition 3.2).
This criteria involves the inverse of an |N| x |\/| matrix and so becomes more complicated
as |N| increases. This is the reason we restrict the neighbourhood size in Theorem 1.1.

Conjecture 1.4. In Theorem 1.1 complete convergence with coexistence continues to
hold for any neighbourhood N in any dimension d > 2 for ¢ < 1 and sufficiently close to
1.

As the above discussion suggests, and a more careful analysis of the proofs shows, this
would follow from Conjecture 3.4 on the cancellative property holding for general g-voter
models. We hasten to add that for other models like the geometric voter model, the
threshold voter, and the affine voter model, one can apply Proposition 3.2 for arbitrary
N, and for the Lotka-Volterra model, one can check the cancellative property directly
through an educated guess of the annihilating dual (see [29] and Section 6 of [13]).
These models are defined in Section 3.2.

As already noted in Section 1.1, taking ¢ < 1 smaller than g. should only make large
clusters less likely and so the complete convergence should follow for all 0 < ¢ < 1 for
d > 2. Moreover, as the result fails for ¢ = 1 (the voter model), we expect ¢ close to 1,
handled to some extent in Theorem 1.1, to be the most delicate case. Recall also from
Section 1.1 that for the extreme case ¢ = 0, a CCT is proved in [21] for d > 2.

Conjecture 1.5. In Theorem 1.1 complete convergence with coexistence holds for any
neighbourhood N, any d > 2 and any 0 < ¢ < 1.

We state the CCT for 0 < ¢ < 1 and d > 2 as a separate conjecture because we believe
the issues here are quite different from those underlying Conjecture 3.4. Here a result
in any d for any neighbourhood would be of great interest. Similar “obvious" results
should also hold for the CCT for Lotka-Volterra models for (symmetric) competition
parameter « € (0, 1) but are again only proved for the most delicate case when « near 1
(see Theorem 1.1 of [13]) due to the perturbative nature of the proofs.

To state our general two-dimensional CCT we need to introduce the drift parameter
mentioned in Section 1.1, and for this, we first need some long time asymptotics of
non-coalescing probabilities for two-dimensional random walks.

1.3 Two-dimensional coalescing random walk

Let p: Z? — [0, 1] be a symmetric, irreducible, random walk kernel with covariance
matrix o2/ for some o > 0, such that p(0) = 0. For the particular case of g-voter
models, p(-) will be the uniform law on a neighbourhood A’. Under a probability P,
let {Bf,x € Z*} be a system of rate one continuous time coalescing random walks
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with jump kernel p, and for A C Z? define Bf* = {Bf,z € A}, let |B{!| denote its
cardinality, and let the time it takes all walks starting in A to coalesce to a single walk
be 7(A) = inf{t > 0: |B{| = 1}. For n > 2 and nonempty, finite disjoint 4, ..., A,, C Z2,
define the stopping times

T(A1,...,A,) = max 7(4;),

1<i<n

(1.6)
o(Ay,...,A,) =inf{t >0: B ﬂBtAj # () for some i # j}.

At the risk of some confusion, for z € Z?2, we will often identify {z} with x. We write

t
a(t) ~ b(t) ast — oo tomean lim a(t) =1
Proposition 1.3 in [9] states that for n > 2 and distinct z1, . .., z,, € Z? there is a finite
K, (x1,...,x,) > 0 such that
- Ky(zy,...,z,
Qoy,on () = P(o(21,...,2,) > t) N(Ccl—nx)ast—M)o. (1.7)
(10gt)(2)

The n = 2 case is well known, as o(z1,x2) has the same law as the hitting time of 0
of a walk starting at 1 — z2 run at rate 2. The following extension of (1.7), proved in
Section 2 below, will be used to describe the key drift term arising in our general CCT.

Proposition 1.6. Let n > 2 and A,,..., A, be nonempty finite disjoint subsets of Z>.
Then there exists a finite K,,(A1,...,A,) > 0 such that

R Kn(Ay,..., A,

P(o(Ar,...,Ap) > t,7(Ar, ..., Ay) <t) ~ # ast — co. (1.8)

(logt)(2)
In fact, ifa; € A;, 1 <i<n,
Kn(A1, ..., Ap)
= > Kp(x1,...,x0)P(0(AL, ..., Ap) > 7(A1, ..., Ay),
distinct x1,...,x, € 72
Blia, . ay =%, L<i<n). (1.9)

Remark 1.7. Let S be a finite subset of Z2. By summing over partitions of S of cardinality
n, one sees that for n > 2, if u(t) > Ct" for some C,r > 0, then

sup(log t)(;)ﬁ(|Bf(t)| =n) < oo.
t>1
Let NV be a neighbourhood in Z?2 (in practice it will contain the support of p but this
is not needed for our definitions), and set
N =N u{0}.

For asetT, [I'| > k, let Px(T') be the set of partitions {r1,...,m;} of " such that each
|| > 1. We will write P(T") for Py(T"). For A a non-empty subset of N, define

0t (4) = Z K3(A, Ay, Az),
{A1,A2}eP(N\A) . (1.10)
0-(4) = Z K3(N\ A A, Ag).

{A1,A2}€P(A)

Note that we have suppressed the dependence of ©F on p and A. For the g-voter model
it will be understood that p = 1,/|N/| for a given neighbourhood N.
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1.4 A general complete convergence theorem in two dimensions

The main conditions we impose on our spin-flip system is that they are cancellative
and constitute a finite range voter model perturbation. To define the latter, for d > 2, let
p:Z% — [0,1] be a symmetric, irreducible, random walk kernel with finite support and
p(0) = 0 (as in the last section but now with d > 2). Write p(A) for }_ _ , p(y). Assume
that

p has covariance matrix o1 for some o > 0. (1.11)

Let fi(z,&) = >, p(y — )1{{(y) = i} (agreeing with our earlier notation if p is uniform
on N) and introduce the associated voter model rates

~

Cvm(x? 6) = f(x)fl (Z‘, €) + f(.’l))fo(.fl}, 6)
Consider also a neighbourhood N containing the support of p. We write |, for the
function on A which maps y € N to &(x + y).

Definition 1.8. A voter model perturbation on Z4 for d > 2 with finite range in N is a
family of translation invariant spin-flip systems, {f.[s] :0 < e <eg}, for some ¢ € (0,1],
with rate functions

ce(x,8) = (z,€) + et (z,6) >0 forallz € 74, € € {0,112, (1.12)

where for some g5, g5 : {0,1}V = R,

~

cZ(x,8) = §(2)91 (§losn) + ()96 (Elotn)- (1.13)
In addition there are g; : {0,1} — R such that

195 — gilloo < cge™ fori=0,1 and all € and some ¢4, > 0, ifd > 3, (1.14)
and
lim ||g; — gilloo =0 fori=0,1, ifd = 2. (1.15)
e—0+

Finally we assume
for all e € (0,¢0), 0 is a trap for £l that is, g5(1p) = 0, (1.16)
and, in addition if d = 2,
foralle € (0,g0], 1 is a trap for £, that is, g5(1x) = 0. O (1.17)

This class of processes is discussed further in Section 3.2. At times we will abuse
the wording and say ¢! is a finite range voter model perturbation, for 0 < ¢ < .
The following “asymptotic rate function" associated with the above finite range voter
perturbation will play an important role:

TS(A) = 91<1A) = lim 05(07 1A) - f1(0, 1A)

e—0 9

for AC N. (1.18)

The above equality is elementary. For d = 2 the “drift" associated with the above voter
model perturbation with finite range in N is

O3:= Y  1°(A)(OF(4) -0 (4)). (1.19)
P#ACN

Fix a neighbourhood N in Z¢ where d > 2. It is easy to see the family of associated
g-voter models for ¢ = 1 — ¢ is a finite range voter model perturbation (see Example 3.8
in Section 3.2). If

re = ((/|IN|)log(|N|/€), for £ =1,...,|N|, and rq =0, (1.20)
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then for the family of ¢ voter models and for A C N,

o) = tim QAU QANVD o)

e—0 e

Therefore, for the two-dimensional ¢-voter model we have

O3:=0= Y  14(07(4) -0 (4)). (1.22)
0£ACN

Here is our general complete convergence theorem in two dimensions.

Theorem 1.9. Assume for 0 < ¢ < ¢, £I¥! is a cancellative and monotone finite range
voter model perturbation in 72, and ©3 > 0. There is an ¢; > 0 such that fore € (0,¢1),
the complete convergence theorem with coexistence (CCT) holds for & le],

Turning to the g-voter model in two dimensions with |[N| < 8, we have already noted
that in any dimension this model is monotone (elementary), cancellative (Lemma 3.3)
and a finite range voter model perturbation (Example 3.8). So it remains to verify that
O3 > 0, which clearly is a crucial condition, as all the other conditions hold equally well
for the ordinary voter model where the CCT fails, and ©3 = 0. In Corollary 5.3 we will
show in complete generality that ©3 > 0 will easily follow from the strict subadditivity of
r?, that is from

r*(AU B) < r°(A) + r®°(B) for all non-empty disjoint A, B C N. (1.23)
For the g-voter model this means (recall (1.21)) if 7, is as in (1.20), then
Toy 40, < Tp + 10, forall0 < ?;, £y + 4y < ‘N| (1.24)

This follows from an elementary calculus exercise, and was noted in Section 5 of [4],
where it played an important role in their analysis of the ¢g-voter model for d > 3. The
general condition (1.23) owes much to the calculation in [4]. Therefore Corollary 5.3
and (1.24) imply that

0> 0. (1.25)

We now may apply this and Theorem 1.9 to prove Theorem 1.1 for d = 2. See Corollary 5.5
for a general statement of this reasoning to establish a CCT in two dimensions.

Theorem 1.9 is a two-dimensional version of Theorem 1.2 of [13] where a similar
result is stated for d > 3. More specifically for d > 3 this result establishes a complete
convergence theorem with coexistence for cancellative spin-flip systems which are voter
model perturbations (as defined in Section 1 of [13]), providing a certain drift is positive.
The drift is f'(0) where

% = 0—2% + .f(u)a

is the limiting reaction diffusion equation under law of large numbers scaling (see [4] or
[71). In fact the drift, f/(0), also equals the positive drift in a limiting super Brownian
motion arising in a low density scaling theorem (see Corollary 1.8 of [10]). That these
two drifts coincide is easy and shown on pages 33-34 in Section 1.8 of [7], and the
fact that the hypotheses of Corollary 1.8 of [10] hold for voter model perturbations is
also verified in the same place. In either representation, the positive drift is used to
show regions of low density will repopulate to avoid local extinction and the resulting
clumping. The reaction function f is defined in terms of the invariant measures for the
voter model and so is not well-defined for d = 2. Therefore, in extending Theorem 1.2
of [13] to two dimensions in Theorem 1.9 we replace f'(0) with the drift ©3 in a super
Brownian motion low density limit theorem (Theorem 1.15 and Remark 1.16 in the next
section). See Section 1.5 for more about this convergence to super-Brownian motion.
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Remark 1.10. In Theorem 1.2 of [13] the last condition for a (CCT), namely S (5[51) >0
if £[¢] is not 0 or 1, was not part of the conclusion, but in fact it is easy to argue just as in
the 2-dimensional result above to derive this condition. See Remark 4.7 below.

Consider briefly the simpler d > 3 case of Theorem 1.1. We have noted that the
hypotheses of Theorem 1.2 of [13] have been verified, at least for || < 8, aside from
the positivity of f/(0). This last property follows from Theorem 1.2 of [4] (the proof given
there for d = 3 holds in any dimension). As a result, we are then able to establish the
d > 3 case of Theorem 1.1 as a direct consequence of Theorem 1.2 of [13]. This simple
argument is carried out in Section 3.3 below. The same lemma (Lemma 5.2) which led to
the positivity of ©3 under the strict subadditivity of 7° in Corollary 5.3, also leads to a
simple self-contained direct proof of f/(0) > 0 for d > 3 (see Proposition 5.9).

To prove the 2-dimensional result, Theorem 1.9, we will use the more fundamental
Proposition 4.1 of [13], instead of Theorem 1.2 in [13]. The former result holds for
arbitrary d at the cost of bringing in some additional technical hypotheses. (In fact
this result was used to establish Theorem 2.1 in [13] for d > 3.) Proposition 4.1 of
[13] is combined with several other results in [13] to prove Theorem 4.4 below. This
result establishes the CCT for cancellative finite range voter model perturbations if
two additional conditions ((4.10) and (4.11)) are in force. These additional conditions
demonstrate the ability of 1’s and 0’s to both coexist and propagate in space and time,
respectively. The next step is to follow the derivation of the CCT for the two-dimensional
Lotka-Volterra model in Section 6 of [13] to show that the above conditions will follow
from a set-up which allows a comparison to super-critical oriented percolation (see (4.18)
below) to show simultaneous propagation of both 0’s and 1’s in close proximity as time
gets large. This is done in Theorem 4.6. The last step is to justify the above super-critical
oriented percolation set-up by using a low density limit theorem in which the scaling
limit is a super-Brownian motion with positive drift ©3 (Theorem 1.15 and Remark 1.16
in the next section.)

1.5 A scaling limit theorem in 2 dimensions

First consider a scaling limit theorem for the ¢g-voter model. We will speed up time
and scale down space for a two-dimensional ¢g-voter model in the usual Brownian manner
and at the same time let ¢ T 1 at an appropriate rate. In the regime where 1’s are
relatively rare we show the normalized empirical measure of 1’s converges to super-
Brownian motion with drift. Such limit theorems are technically more difficult in two
dimensions than higher dimensions, even in the simple voter model setting [6]. The
increased clustering in two dimensions (e.g from the stronger recurrence of the dual
for the voter model) leads to a greater branching rate, or equivalently, a greater mass
per particle. The resulting extra log NV factor complicates even the simplest moment
bounds. Convergence to super-Brownian motion in two dimensions was established for
a class of Lotka-Volterra spin systems (also voter model perturbations) in Theorem 1.5
of [9]. We will refine some of the results and methods used in that paper to obtain the
required scaling limit theorem. In [9] a particular branching coalescing dual process
was used in some key calculations. Such duals seem more complex in our present setting
and so instead we use a systematic comparison of our model with the voter model over
small intervals (see, for example, Section 7.1). We believe this gives a more robust
approach to general voter model perturbations in the critical and physically important
two-dimensional case. The higher dimensional (d > 3) analogues of this limit result follow
from [10] which proves a limit theorem for a general class of voter model perturbations
including g-voter models as ¢ T 1 (see Remark 1.13 below).

Let Mr = Mp(R?) denote the space of finite measures on R? with the topology
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of weak convergence. A 2-dimensional super-Brownian motion with initial condition
Xy € Mp(RR?), branching rate b > 0, diffusion coefficient o2 > 0, and drift § € R, denoted
SBM(Xy,b,02,0), is an Mp(RR?)-valued diffusion X whose law is the unique solution of
the martingale problem:

Vo e CHRY), Mi() = Xul6) — Xo(0) — [y X, (5 A6 +00) ds
(MP) is a continuous F;X-martingale such that

(M(6)): = [ X, (b6?) ds.

Here C} is the set of bounded C?® functions with bounded continuous partials of order 3
or less and ]-'tX is the canonical right-continuous filtration generated by X.
For N > ¢3 (N denotes a real number), let

N’ = N/log N, and ey = (log N)?/N. (1.26)

We let ft(qN) denote a gy-voter model on Z? with gy = 1 — . Consider the rescaled
qn-voter model,

& (x) = &8 (@VN), xe Sy :=7Z>/VN,

and define the associated M p-valued empirical process

1
XN = v > &N (@), (1.27)
TESN

Theorem 1.11. Assume N is a neighbourhood in Z?, 0? = ¢2(N') is as in (1.1) and {&}'}
satisfies X} — X, in M. If© is as in (1.22), then © > 0 and

X" = SBM(Xy,4n0? 52, 0) in the Skorokhod space D(R,, Mp) as N — oo.

The fact that © > 0 was already noted above in (1.25).

Remark 1.12. There is a symmetric result for ¢ > 1 where we take gy = 1+ ¢x. As
noted in [4], the r, in this case is the negative of the r, in (1.20) and therefore in (1.22),
O3 < 0 will have the opposite sign. The same proof noted below in Remark 1.16 (using
the more general Theorem 1.15) then gives the conclusion of Theorem 1.11 with drift
©3 < 0, the negative of that in Theorem 1.11.

Remark 1.13. The analogue of Theorem 1.11 for d > 3 follows from a limit theorem for
a class of voter model perturbations established as Corollary 1.8 of [10]. In this setting
we take N’ = N and ex = 1/N in our definition of XV. It is then straightforward to
verify the hypotheses of the above result and so conclude that for A, 02, and {X/'} as in
Theorem 1.11 with d > 3,

XY = SBM(Xy, 27.,0%,0) in D(Ry, Mp(R?%)) as N — oo.

Here 7. € (0,1) is the escape probability from 0 of the random walk in Z% whose step
kernel is uniform in A/, and
O = Z B(A)P(T(A) < 00, 7T(AU{0}) = 0) — (5(A)I5(T(A U{0}) < o0) > 0,
D£ACN
where for r, as in (1.20),
BA) = > UC#N)(-)ACr e and 6(4) = Y 1(C #N)(=D)A ¢
P#£CCA 0A£CCA

The positivity of © follows from Theorem 1.2 of [4] (or Proposition 5.9 below) and the
fact that the drift © agrees with f’(0) where f is the reaction function in the limiting
reaction diffusion equation (see Section 1.8 of [7]), denoted by ¢ in [4].
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We now consider a general two-dimensional limit theorem for a large class of finite
range voter model perturbations. The random walk kernel, p, is as described at the start
of Section 1.4 with d = 2. The key condition is the following “asymptotic 0 — 1 symmetry"
which was used implicitly for the special case of two-dimensional Lotka-Volterrra models
in [9].

Definition 1.14. Consider a finite range voter model perturbation in 72, [, as in
Definition 1.8 with rates c.(z, ) for 0 < e < gy. We say £[¢) is asymptotically symmetric if,
in addition, for some g% : {0,1}¥ — R,

(log 1/2)*(93(€) — 65()) = g*(¢) for all € € {0, 1}, (1.28)

lim
e—0+
or, equivalently, for some c¢® : Z2 x {0, 1}Z2 — R (necessarily anti-symmetric),

)266('73)5) _ CE(JZ‘,f)

- = *(z,¢) forall z € 72 and € € {0,1}%. (1.29)

li log 1
Jim (log1/e
The relationship between c¢* and g¢ is (note that ¢ is translation invariant)

(0,€) = £(0)g° (E|w) — £(0)g° (E|w)-

Further discussion may be found in Section 3.2. The following asymmetric function will
also be important for our limit theorem:

(0,14) —ce (0,1
r(A) = g“<1A>=1gIg)<1og<1/e>>2” 4 ;( M), (1.30)

The above equality is again elementary.

We are ready to state our general two-dimensional limit theorem. It will not re-
quire monotonicity or the cancellative property. Recall the notation Ks(A;, As) from
Section 1.3, and that ¢? is as in (1.11). A second “drift" parameter associated with such
voter model perturbations will be denoted by

2= Y 1 (A)K(AN\A). (1.31)
D#ACN

Theorem 1.15. Assume {5[8] :0 < e < ey} is an asymptotically symmetric finite range
voter model perturbation on Z2. Let ¢ (x) = J[\E,f](x\/ﬁ) x € Sy. Define a measure-
valued process by

XN =(@1/N) > &Y (). (1.32)

TESN

If XY — Xo in Mp, then
XY = SBM(Xy, 402,02, 0, + O3) in the Skorokhod space D(R.,, M) as N — oc.

Remark 1.16. Clearly a finite range voter model perturbation which is symmetric, that
is ce(x,€) = ce(x, 5) for all x and &, is asymptotically symmetric with ¢* = r* = O3 = 0.
It will turn out that a cancellative finite range voter model perturbation is necessarily
symmetric for each ¢ (see Remark 4.5). Therefore in the setting of our general CCT
(Theorem 1.9), the above limit theorem applies with ©; = 0 and the drift for our limiting
SBM is indeed O3, as in the discussion in Section 1.4. In particular, this is the case for
the ¢g-voter model. Therefore, recalling (1.22) and (1.25), we see that Theorem 1.11 is

an immediate consequence of the general Theorem 1.15 above.
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Theorem 1.15 includes all the examples we know of super-Brownian limits for voter
model perturbations in two dimensions, as well as a number of new ones. In addition to
the above result for g-voter models and the limit theorem for the ordinary 2-dimensional
voter model in [6], this includes the basic limit theorems for Lotka-Volterra models
in [12] (see Example 6.6), the more refined Lotka-Volterra limit theorems in [9] (see
Example 6.2), and limit theorems for the affine and geometric voter model (Examples 6.3
and 6.4, respectively).

The following “survival" corollary is an easy consequence of Theorem 1.15 and
standard arguments (see Section 10).

Corollary 1.17. Assume for 0 < ¢ < €, 5[5] is a monotone asymptotically symmetric
finite range voter model perturbation in Z?, and ©, + ©3 > 0. There is an e, > 0 such
that fore € (0,e1), Ps,(|€)] > 0 for all t > 0) > 0.

Section 2 discusses coalescing random walks and proves Proposition 1.6. Cancellative
processes are defined, and many of their properties are presented, in Section 3.1. Here
the criterion for a nonlinear voter model to be cancellative (Proposition 3.2 from [5]) is
proved for completeness, and then applied to show the ¢-voter model is cancellative for
all g € [0,1] if || = 4. The |N| = 8 case for ¢ near 1 and ¢ < 1 is outlined here, while the
actual maple-assisted proof is presented in an Appendix. Additional properties of finite
range voter model perturbations and associated notation are presented in Section 3.2.
Several examples of cancellative finite range voter model perturbations are presented
here as well. The short proof of Theorem 1.1 for d > 3 is presented in Section 3.3. The
general complete convergence theorem, Theorem 1.9, is proved in Section 4, assuming
Theorem 4.9, which states that the conditions for a block comparison to super-critical
percolation, (4.18), will hold for a monotone, asymptotically symmetric, finite range
voter model perturbation, if ©5 + ©3 > 0. This section also includes a coupled SDE
construction of our particle system ¢ along with E and killed versions of these processes,
on a common probability space (Proposition 4.3 and the ensuing (4.9)). This set-up is
used in the proof of an intermediate result (Theorem 4.6) in which a CCT is established
assuming (4.18) in place of ©; + O3 > 0. Theorem 4.9 is proved in Section 10 as a
corollary to the weak convergence result, Theorem 1.15, and its proof. The latter result
is proved in Sections 6-8 and Section 9. Section 6 sets up the approximating martingale
problems, using a convenient SDE coupling, and also gives a number of examples of the
weak convergence theorem. A number of preliminary bounds and sharp estimates on the
drift terms are given in Section 7, while the proof of convergence to SBM is in Section 8.
A key technical bound, Proposition 7.14, used for exact asymptotics on the drift terms, is
proved in Section 9.

Acknowledgement. It is a pleasure to thank Mathieu Merle for his help with the proof
of Proposition 1.6.

2 Coalescing probability asymptotics for two-dimensional random
walks
We work in the setting of Section 1.3, and in particular, p(-) is the general random

walk kernel considered there, and ¢, ., (t) and K,(z1,...,2,) are as in (1.7). In fact,
as the reader can easily check, the proof below includes a derivation of (1.7).

Lemma 2.1. Assumen > 2 and x4, ...,x, € Z? are distinct. There are positive constants
C5.1 and ty > 0 depending only on p and n such that

(logt)(g’)qm1 ’’’’’ wn () < Cor1 Kp(x1,...,zy) ift > 2(mjx{\xi —z;|*} Vo). (2.1)
i#]

Proof. The argument here is an extension of the one given in Section 9 of [9]. Let
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{éf,x € Z2} be a system of (non-coalescing) independent rate one continuous time
random walks with jump kernel p. Let xy,...,z, € Z? be distinct, set x = (x1,...,2,)
and define the non-collision event

= {B¥ # B% forall s <tandi# j}.

Clearly, if P, is the law of (B**,..., B*"), then ¢;(z) = P,(D;). Dependence on the fixed
natural number n is suppressed.

By Lemma 9.12 of [9], there is a positive constant C5 5 depending only on p and n
such that for z4,...,x, as above,

L (5)log2 | cla,t)

Fo(Dat| De) = log ¢ (logt)3/2’

where |c(z,t)] < Co.2

whenever mjxﬂxi — x| vet <t (2.2)
i

For ¢t > 1 define f,(t) = (logt)(:) P,(D;) and k(t) = max{i > 0: 2' < t < 2"*1}. Since
P,(Dy) is decreasing in ¢, it is easy to see that

(k(t) + D)

fo(2k(t)+l) < falt) < 2) fa (20, (2.3)

1
(k(t) + 1)(2) (k(t)(

For m, m’ > 1, iterating conditional probabilities leads to

femiy = 1om TL (14 1y

— m + Pz(D2n1+11+1 |D2m+z‘)
i=

R A N O
- nem ] (HE) Py(Dages1|Dor). (2.4)

k=m

To make use of (2.4), we let &(z, k) = ¢(z,2%)/(log2)?/?, and note that it follows from
(2.2) that

5) ez, k
P$(D2k+1‘D2k):1—%+ 5{:3/2)7 where |¢(z, k)| < Ca5

whenever 2% > m;gx{|xi — x| vel (2.5)
£
By the binomial theorem there is a constant C5 ¢ > 0 (depending only on n) so that

14 (3) (5)  clk)
(1+ E) = 1+ + S where sup e(k)| < O (2.6)

Taken together, the last two facts imply that for some C5 7 > 0, depending only on p(-)
and n, there are constants é(x, k) satisfying

1\ (2 k
(1-}-%)( )P (D2k+1|D2k) =14+ —= ( ) where |5(.§U,k‘)| < Cy.7 for 2k > mﬁx{|l‘i—$]’|4}\/64.
i#]

1372
(2.7)
Use this in (2.4) to see that, for all m and = satisfying 2™ > max{|z; — z;|*} V €,
, m+4+m’—1 ( k‘)
foemy = rem I (1 + ) where sup |&(z, k)| < Cor.  (2.8)
e k3/2 k>m
EJP (), paper . https://www.imstat.org/ejp
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If m also satisfies m > jo = [(2C4.7)?/?], then the above bound implies
&(x, k)
k3/2

and in particular, each factor in the product in (2.8) is strictly positive.
Define to = e* v 270 and mo(x) = min{m : 2™ > m#ax{\:ci —x;]*Vto} > jo. Then for
i#£]

1+ >1/2if k > m, (2.9)

any m > mo(z), (2.8) and (2.9) imply

o0

i f@m ) = L I ( k3/2 ) (2.10)

k=m

exists, and is strictly positive. The fact that limg_, fZ(Q ) exists combined with (2.3)
actually proves (1.7), with

oo

Kp(z1,...,m0) = f2(2™) H ( k3/2 )for all m > my(z). (2.11)

k=m

It follows from this and (2.8) that for all m > mg(z)(> jo),

e O < ([T 0-5) ex @

=m =Jo0

where we have also used (2.9) and the definition of j.
Finally, if ¢ > Q(mjx |zi — x;|* V to), then 2 > ¢/2 implies k(t) > my, and by (2.12),
i#j

oo

10y < Kot ] 1T (- S

k=jo
It now follows from (2.3) and (2.12) that for such ¢ (note also k(t) > 1),
(t) < Mmzk(t)) <2(3) [ ﬁ (1 - %)} K@ oan). (2.13)
(k(£) ) =
This completes the proof of Lemma 2.1. O
For disjoint finite nonempty sets of Z2, A, ... 4, introduce
Iy = {J(Al, B Ap) >t T(Ar, . AL < t},

and define g4, 4,(t) = P(T';). Note that if 4; = {a;} are all singletons, then
T(A1,...,A,) =0,and so ga,,.a,(t) = ga, ... a,(t) agrees with our earlier notation.

.....

Proof of Proposition 1.6. Assume A;, i < n and a; € A; are as in Proposition 1.6, and
define K,,(Ay,...,A,)(< 00) as in (1.9). On the event I';, B{" # B, for all i # j, which
implies qa, ... 4, (t) < ¢as,....a, (t). It follows from (1.7) that

limsup(logt)( )qA 4, () < Kp(ay,...,an) < o0. (2.14)
t—o0

.....

Letting 7* = 7(A4,...,A,) and 6* = 0(4,4,...,A,), and applying the Markov property at
time 7%, we have

(log#)()qa,...a,(t)

= Z / (6" > 7" € du, BY = x; for1<z<n)(10gt)( )qzl ,,,,, Lt —u).
distinct z1,...,2, €EZ2
(2.15)
EJP (), paper . https://www.imstat.org/ejp
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By (1.7), for fixed u € [0,t), and distinct x4, ..., x, € Z2,

tli)m (logt)( )qzl (t—u)=Ky(x1,...,2,). (2.16)

,,,,,

In view of the definition of K,,(44,...,4,), (2.14), (2.15), and (2.16), Fatou’s Lemma
implies that

Kn(Ar, ..., Ag) <liminf(logt)(2)ga,,a, () < limsup(logt) 2, 4, (t)
oo

n

t—o0
< Kp(ai,...,a,) < oco. 2.17)
Now introduce
A* = max{|B% — B |*},
i#j
and the disjoint decomposition I'; = FEI) U F§2) U I‘E?’), where

I = {o* >t 7 € (t'/3 4]}

T = (0" > t,7% <t/3, A" > 1/4})

I = (6% > t,7* <t1/3 A* < t/4}.
We will show that as ¢t — oo,

(logt)(®) B(I{Y) = 0 fori = 1,2, and (2.18)
(logt) B P(T®) = K, (Ar,..., Ay), (2.19)

proving (1.8). Itisin the proof of (2.19) that we use Lemma 2.1.
On the event r§1>, Z | B

=1

that if A = U}, A;, then

|4+ -+ |An| = n+1). It follows

(logt)(3) P(rV) < 3 (log )2 gy yro oy (1/3) > 0 @St — 00,  (2.20)

distinct yo,y1,..-,yn €A

since each probability in the sum is O((log t)*(n;rl)) by (1.7).

On the event T'\?), there must exist a # b € A such that |B2 — B| > (t/4)'/4 for some
u < t'/3. Assuming (t/4)Y/* > 2 max, , we have the crude bound
aFbe

2 a
PPy < 3 P( sw [Bi- B> (5
afbed  OSustl/s

= 3 P( sw B 5V

afbeA  OSustt/s

AN ~
(3)2( sw 1mep=1c02).

0<u<2t1/3

IN

Doob’s inequality implies

(logt)(2) P(r?) < (";') (bgﬂﬂw = 3202 (';‘) (logt)(2)¢=1/6 — 0 as t — oo,

completing the proof of (2.18)
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To handle I‘EP’), we recall (2.1) and suppose that ¢ > 4t V 8 (so that t — /3 > t/2).
Applying the Markov property at time 7* gives us

(tog 1) 2) P(0?)
£1/3
= Z / P(o* > 7" € du, B = x; for 1 <i < n)(log t)(Q)qml,__Jn (t—u).
0

distinct x1,..., Ty ez?
maxi;{|zi—z;]*} <t/4

(2.21)
For u < t'/% and t/4 > max;4;{|z; — x;|*} we have (use also ¢ > 4t V 8)

(t—u)/2> (t—tY3)/2 > t/4 >ty V %X{m — ;[

and so Lemma 2.1 applies to show that

) < (1ogt)(g) _
(log(t — u)) (%)

For the last inequality use ¢ — u > t/2 and ¢t > 8. The right-hand side is integrable with
respect to P(c* > 7* € du)l(z1,...,x, distinct) dA for counting measure A on (Z2),
by (2.17) and the definition of K, (4;,...,A4,). So we can use (2.16) and dominated
convergence to take the limit as ¢ — oo inside the integral in (2.21) and hence, recalling
again the definition of K,,(44,..., A,), prove (2.19) and so complete the proof. O

(log t)(g)qxl,“.@n (t — 02_1Kn(.2?1, e ,J)n) S Q(Q)Cgthn(Z‘l, . ,xn).

3 Cancellative processes, voter model perturbations and examples

3.1 Cancellative processes

Let A be a non-empty finite subset of Z? \ {0}, and call such a subset a general
neighbourhood. Our cancellative processes are translation invariant spin systems with
rate functions satisfying

(€)= 22 |1 - 2¢(w) - 1) > Bo(AH(E A+ )], (3.1)

2 /

ACN
where H(, A) = [[,ca(26(y) — 1), ko is a positive constant, 5y > 0, 5y(@) = 0, and
> acx Bo(A) = 1. This last implies 1 is a trap for &, that is, ¢(z, 1) = 0. The restriction
to subsets A of A means our definition is a bit more restrictive than that in (1.16) of [13]
or (4.4) in Section II1.4 of [24]. A recent summary of properties of cancellative processes

is given in Sections 1 and 2 of [13]. We say £ is a good cancellative process if, in addition,
Bo(A) > 0 for some A with |A4] > 1.

Remark 3.1. For any probability ¢y on A/, the voter model with kernel ¢q is cancellative
with kg = 1, and $y(4) = qo(y) if A = {y}, and zero if |A| # 1, as one can easily
check (or see Example I11.4.16 in [24]). So the voter model is cancellative, but not a
good cancellative process. The converse also holds and equally easy to check: If € is
cancellative but not good cancellative, then £ has rates equal to ky times those of a voter
model with kernel qo(y) = Bo({y}) (y € N).

Another useful condition, which will hold for our main results, is
Bo(A) = 0if |A] is even, (3.2)
which by Lemma 2.1 in [13] is equivalent to

0 is a trap for &, (3.3)
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and also to
¢ is 0 — 1 symmetric, that is, ¢(z, &) = ¢(x, §). (3.4)

A cancellative process has a translation invariant stationary distribution, which is
the weak limit of the process started in Bernoulli product measure with density 1/2 (see
Corolllary II1.1.8 of [20]). Under the above symmetry it will have density 1/2 and so
we denote it by v1,5. A simple proof of the existence of v;,, under (3.4) is given after
Lemma 2.1 in [13]. It is possible that 4,5 = (1/2)(dg + d1), and so it need not have
the coexistence property. For example, this is the case for the voter model when d < 2
(Corollary V.1.13 of [24]).

As defined in [5], a general neighbourhood A/ and nonnegative sequence a = (ay),
1 < ¢ < |N|, (&) # 0, defines a nonlinear voter model &, : Z¢ — {0, 1} if the rate at which
the opinion at a site flips to the opposite opinion is ay if ¢ of its neighbours hold this
opposite opinion. That is, &; is the spin-flip system defined by the rate function

Y W
cw,€) = &(x) Y arl{m(z,§) = £ +&(x) Y arl{no(,€) = £},
(=1 {=1

where n;(z,§) = >, o, H{&(y) = i}, i = 1,2. Clearly every nonlinear voter model
rate function c(z, £) satisfies the symmetry condition (3.4). In [5] NV satisfied additional
symmetry and irreducibility conditions, but they are not needed for the results in this
section. Henceforth we exclude the trivial case of a = 0 from consideration. The g-voter
model on Z? (with neighbourhood N) is the nonlinear voter model with a, = (¢/|N])9.
The following result, from page 129 of [5] provides a means of checking that a
nonlinear voter model is cancellative without checking (3.1) directly. We give the short
proof for completeness and to highlight the choice of 3y and ko which will enter later.

Proposition 3.2. Let N be a general neighbourhood and a; > 0 for { = 1,...,|N| with
(ag) # 0. Define the |N| x |N| matrix M by

: J\ (W= :
(k)= Q(kZ) <k,j <N (3.5)
odd i<jAk
If there is a nonnegative sequence o = (ay), 1 < k < |N|, such that
V]
ag=>»_ apM(k,(), 1<0<|N, (3.6)
k=1

then the nonlinear voter model determined by (a,) is a cancellative nonlinear voter
model. Moreover in (3.1) kg = Zlg‘l ay and for A C N,

) 0 if A = {0} or|A| is even
Bo(A) = T X am if0 ¢ A, |A] = m is odd (3.7)
* lam_1 if0 € A, |A| = m is odd,

and so (3.2) also holds.

Proof. Define £(A) =, 4 &(a) and £(A) = 3, 4 £(a). In (3.1) since 2¢(z) —1 = (1)@
and ), fo(A) = 1, we can rewrite (3.1) for z = 0 as

¢(0,¢) =%° > Bo(A)[1 = (~1EDHO], (3.8)

ACN
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Let o = (a;) be a given nonnegative sequence such that (3.6) defines non-negative
a, not all identically zero. Let kg = ZL@l ayp > 0, the latter since otherwise ¢ = 0. For
A C N, define fy(A) by (3.7). Then () = 0and Y-, So(A) = 1 S Mo, = 1. Note
also that (3.2) holds and hence so does (3.4). With these choices, (3.8) becomes

c(0,¢) = % Z {am Z +1(m > 3)am-1 Z }[1 — (_1)5(14)-5-5(0)] (3.9)
m odd AZ0,|Al=m A>30,|Al=m

Observe that in the second sum, m > 3 because we have set 5({0}) = 0.
Observe that if m is odd and |A| = m, if £(0) = 0, then

1

= [1 - (—1)5(A>+5<0>] - %[1 + (—1)5@“)} — 1{€(A) is even} = 1{¢(A) is odd]},

where we have used the fact that £(A) + £(A) = |A|. Therefore,

c(O,f)zZ{am > H1m=3)am Y }l{f(A)isodd}. (3.10)

m odd AZF0,|Al=m A>30,|Al=m

A,G) = {ACN0¢ A,14] = m V) = j,£(4) is odd ]
A (G) = {A CN:0€A Al =m,EWN) =3,6(A) is odd}.
Then

(0,8 = > aml AL+ D amalARG)  ifE0)=0,(WN) =4 (3.11)

m odd m>3, odd

Continue to assume £(N) (= n1(0,€)) = j and £(0) = 0, consider A € A/ (j), and the
disjoint union
A=(An{z:&x)=1HU(An{x:&(x) =0}).

By counting the number of ways to choose the first set with the requirement i = £(A) <

j A'm odd, we find that
A .7 |N|_J
= > (D ().

i odd
1<jAm

Here we build A C A by first choosing the i sites of A to put 1’s from the available j
sites in state 1, and then choose the m — i sites of A to put 0’s from the |A| — j available
sites in state 0. Similar reasoning (recall £(0) = 0 and now 0 must be in A) leads to

"o ' N —J
o= X (D)
i odd
i<jA(m—1)

Insert the above into (3.11) to get for £(0) = 0, {(NV) =,

- 2,5 00)

1<k<|N| z odd
<jAk
V]
= apM(k,j) = a;.
k=1
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o~ ~

If£(0) =1, and £(N) (= np(0,€)) = 7, then £(0) = 0. Use the symmetry (3.4) noted earlier,

'~

and the above with ¢ in place of £ to get

~

C(O’ 5) = C(Ov g) = aj-

Therefore the cancellative system corresponding to the above 5y and kg is indeed the
non-linear voter model determined by (a;). O

Lemma 3.3. Assume d > 1, and N is a general neighbourhood with 2 < |[N] < 8.

(a) For2 < |N| <4 and all q € [0, 1], the corresponding q-voter model on 74 is cancellative,
and for q € [0,1), in (3.1) we have fy(A) > 0 for all A ¢ N with |A| = 3.

(b) For q sufficiently close to 1, the corresponding g-voter model on Z? is cancellative for
q < 1 and the last conclusion in (a) holds for q < 1.

Proof. (a) Suppose first that || = 4. it is straightforward to check that

1 2 3 4 2 0 2 4
03 4 3 0 L 1lo 2 0o -6
M=1g 5 1 4 and Mu=g2lo o 5 4

1010 1 -1 1 -1

Thus, by (3.6), for a; = (¢/|N])?, o = aM~! is given by

1/1Ne 1/3\e 1
@) =5(3) -2(3) +35
171N 3/1Ne  1/3\e 1
a@=5(3) -3 +3() -5
It is now an enjoyable calculus exercise to check that each ay(q) > 0 forall0 < ¢ <1
and each ay(g) > 0 for 0 < ¢ < 1. By Proposition 3.2 the cancellative property holds for
q € 10,1], and (3.7), together with a9, a3 > 0, give the final conclusion for any ¢ € [0, 1).
The cases |N| = 2,3 are handled the same way, with simpler calculations. This prove (a).
(b) Consider \N| = 8. It is still easy to write down M from (3.5). Then maple can be
used to find M~! (see the Appendix), and (3.6) can be used to write down each ay(q),
1 < ¢ < |N| explicitly. With these formulas it is easy to check that a;(q) > 2-IVI+1 for
0 < g <1, and also that ay(1) = 0 for 2 < £ < |N|. Some simple, if lengthy, arithmetic
shows that
aj(1) = —27ke log(%) <0for2<(<|N, (3.12)
¢
where kg, mg,n, are positive integers with m, < n, and k; < |N| + 1. All of these
quantities are given in the Appendix below. It follows that each «;(q) must be strictly
positive for ¢ < 1 sufficiently close to 1. Thus Proposition 3.2 implies the cancellative
property for ¢ < 1 close to 1, and (3.7) implies that £y(A) > 0if |[A| =3, AC N forqg < 1
close to 1.
The cases |N| = 5,6, 7 are handled the same way. We omit the details. O

Conjecture 3.4. All g-voter models are cancellative for any d > 1, any neighbourhood
N, |N|>2 andany 0 < q < 1.
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3.2 Finite range voter model perturbations and examples

For d > 2, let the probability kernel p : Z? — [0, 1], the local frequencies of type i,
fi(z,€), and the voter model rates ¢'"(z, £) be as in Section 1.4. In particular,

p has covariance matrix o1 for some o > 0. (3.13)

Consider a neighbourhood A containing the support of p and recall the definition of a
voter model perturbation with finite range in A/, given in Definition 1.8. Recall also from
(1.18) the asymptotic rate function r;(A4) = g;(14) for A C N.

It follows from (1.14) or (1.15) that by decreasing ¢y, if necessary, we may assume
that

sup [|g5/lce + 197 1lcc = C(g) < o0. (3.14)
0<e<eo

Remark 3.5. For d > 3 Proposition 1.1 of [7] shows that in the finite range case (both
voter model and perturbation depend only on sites in A), our definition of finite range
voter model perturbation coincides with the voter perturbations considered in [13] for
d > 3 (i.e. those satisfying (1.10)-(1.15) of that reference). The notation here is a bit
different as what we call ¢; is denoted by h$ in [7], where a related quantity is called g7
and is non-negative. This non-negativity plays a role in the definition of the dual process
used to study ¢/€). We will only use the dual process implicitly when quoting arguments
from [13] in Section 4 so there should be no confusion.

For d = 2 to obtain a scaling limit theorem to super-Brownian motion we have
added the condition that 1 is a trap. That there is distinct behavior if 1 is not a trap
is demonstrated by Theorem 1.3 of [17] where for the 2-dimensional contact process
with rapid voting (a voter model perturbation) it is shown that the critical birth rate for
survival must diverge to +oo as the voter rate gets large. We also have dropped the
Holder convergence rate in (1.14) which entered in the pde analysis used in earlier work
but will not be needed here. Indeed, the Holder convergence rate will not be satisfied by
the 2-dimensional Lotka-Volterra models described below.

In two dimensions, recall from Definition 1.14 the notion of a finite range voter model
perturbation which is asymptotically symmetric, and which will play an important role in
our scaling limit theorems.

Remark 3.6. Clearly 0—1 symmetry of the voter model perturbations c. (for all €) implies
asymptotic symmetry with r* = g = 0. Note also that by (1.14) (or (1.15)) and (1.28),
asymptotic symmetry of a voter model perturbation implies

~

91(&) = go(§)- (3.15)

For d > 3 finite range voter model perturbations rescale to SBM if time is rescaled by
1/e and space was scaled down by /¢ (see [10]). If d = 2 these scaling parameters will
change, as already noted in [9] in the special case of Lotka-Volterra models. Here the
scaling parameter N > e is the unique solution N = N(¢) of

(log N)?

g = T, € € (0750]. (316)

It is a calculus exercise to verify the existence and uniqueness of such an N for ¢ €
(0,1] D (0,&0]. Henceforth for d = 2 we usually consider N as our fundamental parameter
and set e = ey = (log N)3/N. The constraint ¢ < gy leads to

N > N(gg) > €2, (3.17)

where the actual value of N(gg) is of little concern as we will be interested in taking
N — oo.
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Proceeding now with d = 2, our rescaled lattice is Sy = Z?/v/N. For ¢ € {0, 1}Z2,
define the rescaled state ¢(N) € {0,1}%V by ¢MV)(2) = ¢£(zv/N). Let {c., ¢ < &o}, be
an asymptotically symmetric finite range voter model perturbation and consider the
rescaled rate function

Nz, M) = Neo (VN €), z € Sy, € €{0,1}% (3.18)
for the rescaled voter model perturbation process
N (2) = £V @VN), € S (3.19)
For z € Sy, and ¢ € {0,1}%’ introduce
M, €M) = (/N ),
N (2,6 = E@VN) g™ (Elaymoad) +E@VNIGE (Elyman): (3.20)

and
N (2, 6M)) = E(avVN) (log N)?[g5 (€l vmans) — 95 Elyman)]- (3.21)

Then for z € Sy and ¢ € {0,1}%,
cN(m,g(N)) = Nc‘""(x\/ﬁ, &) + (log N)SCZN (x\/N,g) (3.22)
= NcN’V"'(mé(N)) + (log N)CN’“(JU,{(N)) + (log N)3cN’S(:E,§(N)). (3.23)
Clearly c¢V** is symmetric, that is
N5 (a, €N)) = N (a2, €V, (3.24)
and a short calculation shows that
if ¢*(x,€) = ¢ (2,€) for all , z, £, then ¢V* = 0 for all N. (3.25)

Moreover it is easy to check that the decomposition in (3.23) uniquely determines ¢V+*
and ¢V if we assume that ¢"V>* is symmetric and for every z € Sy, ¢N%(z, éV)) = 0 if
¢M)(z) = 1. If for z € Z* and ¢ € {0,1}%,

~ o~

¢(@,€) = &) go(Elarn) + E(@)go(Ela+n), and (@, €) = E(x)g” (o),

then ¢® is symmetric, and from (3.20), (3.21), (1.15), log(1/en)/log N — 1, and (1.28) we
have

sup 1N (2 /VN, €MDY — ¢ (a,6)| + |V (z/ VN, E)) — ¢(z,€)| = 0 as N — .
z€72,6€{0,1}%*

(3.26)
Use the definition of ¢V>* and the convergence in (1.28) to see that if
rt(A) = (log N)?[g7™ (1a) — 65" (1ar\a)] for A C N,
then
N/ VNEN) =&(x) Y MU A arn = Losal (3.27)
0£ACN
and
Jim rNa(A) = g%(14) := r%(A) forall A C N. (3.28)
—00
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The fact that 0 and 1 are traps implies g;" (1p) = g5~ (1x) = 0 and so we have dropped
the A = () term in the sum. Similarly if

TN’S(A) = go" (Iana) for A C N,
then we have

N @/ VN EM) =€) Y N e ain = Larad+E@) Y NV (A in = losanal

DAACN DAACN
(3.29)
and (recall also (3.15))
Jim r™5(A) = go(Iana) = g1(1a) = r*(A) forall A C N, (3.30)
—00
It follows from (3.14), (3.28) and (3.30) that
lr] == sup [rNe(A)| VPN (A)] < oo. (3.31)

N>N(eo), 0£ACN
The following result will be useful for some comparison results in Section 7.1.
Lemma 3.7. For all non-empty A C N, p(A) = 0 implies that r¥*(A) > 0 for all N.
Proof. Assume p(A) = 0 for a fixed set A as above. We must show that
96(Iana) >0 foralle € [0,e0]. (3.32)

Choose ¢ € {0,1}%" such that £(0) = 1 and |y = 1an4- Then

0 < c(0,6) = fo(0,6) + g5 (Lana) = 3 PWEW) + g5(1ara) = g5(1ana)-
yeA

o~

The next to last equality holds because £(y) = 0 for y ¢ A, and the last equality holds by
our assumption on A. This proves (3.32). O

Recall the notation @i(A) from (1.10) and K5 from Proposition 1.6. We also recall
O3 from (1.19) and ©5 from (1.31):

O3= Y 1(A)(OT(A)-07(4) and Oy= Y 1 (A)K(AN\A4). (3.33)
0£ACN 0£ACN

The following identities (see Remark 5.4 below) will simplify ©3 in some of the examples
we now discuss:

> Alet(4) -6 (4) =0, (3.34)
0A£ACN
and i
> (O -0 (4) =k= Jim (log 3 P(IBN| =3) > 0. (3.35)

D£ACN

Example 3.8. (q-Voter Models) We begin with all d > 2, follow [4] and consider, as in the
Introduction, the g-voter models with kernel p(z) = 1x/(x)/|N], for some neighbourhood
N. We are interested in g near 1, ¢ < 1, and so let g = 1 — ¢ for € € (0, 1] and define

- T l—e _ 1 (z, x, l—e _ x,
(06 = G LB T @ | o9 folw8)

9 9
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Then the (1 — s)-voter rates may be written as
C €T f =c (T +ec.(x 5 . 3.36
(1 E)( ’ ) Vm( 76) :( ’ ) ( )

Recall from (1.20) that for 1 < £ < |N

, e = (£/|N])log(|JN|/€), and 7o = 0, and let

l—e _
re = WIND 2 = WIWND g0 e g0, N (3.37)
£

Next, define ¢5 : {0, 13V = [0,00) for i = 0,1 by

g =r; if > Iy =i}=¢

yeN
and g; in the same way, but with no superscript €’s. Then we can write

IV
¢2(@,6) = Y rf (@)1 (,€) = £} + @) Hno(@,6) = £}) (3.38)

{=1

~

A Taylor series expansion shows that for0 < u < 1,and 0 < e < 1,

M log(1/u) + s ni o1
and thus .
0< ﬁ;u—ulog(l/u) SUEZ:OW =e. (3.39)
The above shows that for ¢ € {0,...,|N|},
|rg —re| <e. (3.40)

and (3.40) implies
llg; — gilloo <e.

As 0 and 1 are traps for ¢g-voter models, we have verified that the collection of g-voter
models, {c(!7%) : £ € (0,1]} is a symmetric voter model perturbation with finite range
in NV, non-negative g;,and rg = 1, ¢g = 1in (1.14) (even if d = 2). As a final note here,
using the fact that supg.,<; ulog(1/u) = 1/e, it follows from (3.39) that if 0 <e < 1—1/e,
then by (3.40), -

0<r<lfor1<{<n-1. (3.41)

Consider now the rescaled quantities when d = 2. We have from the above that
2 (A) = gg™ (Laa) = 1{A) = 11a) = 7°(A4), (3.42)

agreeing with (1.21). The symmetry of ¢! =) puts us in the setting of Remark 3.6 and
shows ¢V:¢ = ¢® = N:@ = @ = () by (3.25). Therefore,

O3 =0 and O, = 0. (3.43)

The first was already noted in (1.22), where the definition of © is given.
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Example 3.9. (Lotka-Volterra Models). The 2-dimensional Lotka-Volterra model of
Neuhauser-Pacala [29] with parameters (ag, o) € (0,1)? is the spin-flip system with rate
function (see [9])

(2,8 = " (2,€) + (@) (a0 — 1) fi(2,€)* + &(z)(n = 1) folw, €)".

Here both the voter model kernel and the notation f; use the kernel p(z) = 1x(z)/|N|
for some neighbourhood N. If oy V ap > % ¢ is monotone (see Section 1 of [11]).
In the diagonal case a; = ao, Vs good cancellative (see, for example, the Proof of
Theorem 1.1 in Section 6 of [13]). As in Section 1 of [9], for ¢ € (0,1) one sets

a;=1—¢e+ Bi(E) (log(1/¢)) "2, where lig)lb’fe) =83 €R, i=0,1,

so that our voter model perturbation rates are given by

~

ce(x,€) = ™ (@,§) + g5 ({larn)é (@) + €95 (€lorn)E(2),
g7 (€lw) = (— 1+ (log 1/2)8{2,) £:(0,€)%, i =10,1.
If g; () = — fi(0, €)%, clearly
g5 — gillose < C(log(1/e))"2 =0 fori=0,1.
Obviously both 0 and 1 are traps for each ¢, and we also have
lim(log(1/€)) (45 (€) — 96(€)) = lim(55” — 517 /2(0,€)*

= (Bo — $1) f1(0,€)*
= g"().

Therefore {c. : ¢ € (0,1)} is an asymptotically symmetric finite range voter model
perturbation. We have

8y = (

and so, for ) £ A C N,

log N

2
951 \Tglen) as N
log(l/sN)> B; "V — Bias N — oo,

[Al?
)

- —(ﬂf = (A), (3.44)

PN (A) = g5 (Laa) = (= 1+ (log N) 7280 (

and
rV(A) = (log N)?[g5 (1a) — g5~ (1ar\a)]
= (BY = BY)f1(0,14)

= (Bo — 51)(||.MA||)2 =r?(A).

Therefore in this case we have

Al\2 -

@2 = @év = (60 - Bl) Z (|./\/.||> KQ(A,N\A), (3.45)

0#ACN

and

AlN2

=0y = Y (||N||) (O (4) — 6+ (4)). (3.46)
0#ACN
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Example 3.10. (Affine Voter Models) The 2-dimensional threshold voter model rate
function, introduced in [5], and corresponding to ¢ = 0 in Example 3.8, is

" (x, &) = 1{&(z + y) # &(x) for some y € N'}

for a neighbourhood A. The affine voter model with parameter « € [0, 1], introduced in
[31], is the spin-flip system with rate function

(z,€) = ac™(@,8) + (1 — a)c™(x,€).

Here the voter model kernel is p(x) = 1x(z)/|N/|, and 0 and 1 are traps. The fact that ¢t
is cancellative was noted in Section 2 of [5]. It is easy to check that a convex combination
of cancellative rate functions is cancellative, and hence ¢?' is cancellative, in fact good
cancellative for a < 1. Monotonicity of ¢V, and hence of ¢ is clear. Lettinge =1 — «,

(z,€) = c"(@,8) +e(c™(x,€) — " (2,€))
so that our voter model perturbation rates are given by
ce(2,€) = (@, ) + £ (E(@)g5 (Eloan) + E@)g5 (Elo4n),
9 (€lv) = = fi(0,8) + {ni(0,&) > 1} i =0, 1.

Since g; = g5 does not depend on ¢, (1.15) holds. Obviously each c. is symmetric, so
rN:@ = p@ = go = (. Therefore {c. : ¢ € (0,1)} is an asymptotically symmetric finite range
voter model perturbation such that for A # (),

Vo (A) = r*(A) = go(Lana) = —

©- = 0, and if we use (3.34) and then (3.35), we get

0= 3 (1)@ -0 ()= T (O7(4) -6 () =k == 63" (347
0£ACN 0A£ACN

Example 3.11. (Geometric Voter Models) The 2-dimensional geometric voter model
with rate function, introduced in [5], is

P, ) = Vit S Helw+y) # €)= (3.48)
yeN

1-40
Here N is a neighbourhood, 0 < # < 1, and 0 and 1 are clearly traps. As 6 ranges from 0
to 1, these dynamics range from the threshold voter model to the voter model. The fact
that ¢9¥ is cancellative was proved in Section 2 of [5], and it follows that ¢9" is then good
cancellative. Monotonicity of ¢9" is again elementary. By (7.3) in [13], takinge =1 -6
(instead of £2),
N

(0,€) = "(2,€) 1 £ 2L ol € u(2,6) + O as & = 0. (3.49)
Here, ¢'™ and the densities f; use the kernel p(z) = 1y (z)/|N
uniform in z, {. Thus, there are g; such that

, and the O(e?) term is

o~

ce(x,€) = ™(@,8) + g1 ({larn)§ (@) + €95 (€larn)€(2),

where if g(z,£) = (INV]/2) fo(z, &) f1(z, &), then ||gf — g]| < Cle|. Clearly %" is symmetric
and so by Remark 3.6 ¢* = r* = 0. Therefore {c.,0 < ¢ < 1} is an asymptotically
symmetric voter model perturbation such that for A # (),

r(A4) = g(lava) = |A|(|/2\|f/|\/—|A|).
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Thus O, = 0 and, again using (3.34), we have

_ L _ oA —o-an — M AN -1y _ ot
05 = g, 2 I = 14D(O7 () - 07() = 5 MZCNQ NT) (@ () —er )
(3.50)
— o3 = Wloy.

3.3 Proof of Theorem 1.1 for d > 3

We assume N is as in Theorem 1.1 for d > 3. Let ( ), denote expectation with
respect to the voter model equilibrium with density « € [0, 1] and define symmetric rates

fu) = (1= £(0))c*(0,€) = £(0)c™(0,£))u for u € [0,1], (3.51)

where c* is as in (3.38) but with 7, in place of rj. As noted in Section 1 of [7] f will be
a polynomial in v of degree at most |A| + 1. As we have d > 3, Theorem 1.2 of [13] (as
strengthened in Remark 1.10) shows that the conclusion of Theorem 1.1 will hold for
g < 1 and sufficiently close to 1, providing the following hold for some ¢, € (0, 1):

(1) For 0 < € < &y, c(l_s)(x, £) is a rate function of a cancellative process (as in (3.1)).

(2) {79 (,€) : 0 < € < g0} is a finite range voter model perturbation.
(3) f(0) > 0.

Here we have ignored one condition from Theorem 1.2 of [13] (condition (1.2) there) as
the required exponential tail bound is trivially true for our finite neighbourhood setting.
The first two conditions have been established in Sections 3.1 (Lemma 3.3) and 3.2,
respectively. Finally (3) follows from Theorem 1.2 of [4], where it is shown for any
neighbourhood N O

Remark 3.12. The proof of f/(0) > 0 from [4] is stated for d = 3 but holds equally
well for d > 3. In fact it gives a stronger representation for f which implies f/(0) > 0.
Alternatively see Proposition 5.9 for a more direct proof.

4 A general complete convergence theorem in two dimensions

Fix an initial state & € {0,1}%". For ¢, 7 € {0,1}%". We first extend the stochastic
differential equation (SDE) construction of spin-flip systems and coupling with killed
processes from Section 2 of [11] to the setting where |{y| may be infinite. Let {N®* :
x € Z2,i = 0,1} be independent Poisson point processes on ]R2+ with rate ds x du. For
RcR?and T >0,

G([0,7] x R) is the o-field generated by {N*"*|g 7)xr : ¢ € R,i = 0,1}. (4.1)

Consider a rate function ¢ : Z2 x {0,1}%" — [0, 00), which is bounded continuous. Let

~

é(x, &) = c(x,€) be the rate function for the evolution of the 0’s. We assume

D (e(x, &) +é(x,)) < Cle, 4.2)
and
sup »  suple(x, ) — ez, M) < C, (4.3)
®€Z? u€Z?
where R
€M (@) = 1z # W () + Lz = u)é(x).
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Under (4.3) and boundedness and continuity of ¢, there is a unique Feller process &;
taking values in {0, l}Z2 associated with the rate function c (see Theorem B3 in [25]).
Note that the above conditions hold for c iff they hold for ¢.

Remark 4.1. It is easy to check all of the above conditions are satisfied by ¢, if {c. : 0 <
€ < go} are the rates of a finite range voter model perturbation. See Corollary 2.4 of [11]
for (4.2) (without the ¢ term) and (4.3). Condition (4.2) follows easily for ¢ from the fact
that 1 is a trap for our finite range voter model perturbations in d = 2 (just as it followed
for c using the fact that 0 is a trap). Note that under our boundedness assumption on c,
(4.2) for c alone is equivalent to condition (2.1) in [11].

For & € {0,1}%" consider the SDE

&(z) = &o(x) +/O /(1 — & (2)1(u < e(z, & )) N0 (ds, du)
- /t /fs,(:n)l(u < c(z,&- )N (ds,du), t>0,z€Z> (4.4)
0

If |&0] < oo, (4.4) has a pathwise unique solution & = &[] which has the same law
as the above Feller process with initial condition &,. For this see Proposition 2.1(a)
of [11] and note, that monotonicity of ¢ is not needed in Proposition 2.1(c). Now
fix My € N, set I’ = (—Mjy, My)?, and let c¢(z,£) = 1(z € I')c(x,&). Clearly ¢ also
satisfies all the hypotheses we have imposed on c. For our given initial condition &, let
§,(@) = 1(z € I')éo(x). Then [ | < oo (even if |{o| = oc) and so there is a unique solution,

€, =¢[¢,. 1), of

g =@+ [ [0-g g, NN s
- /t /gs_(xn(u <c(, &, ))NTH(ds,du), t>0,z€Z> (4.5)
0

Note that ét(:c) =0forall¢ > 0andall z ¢ I'. If, in addition, ¢ is monotone, then by
Proposition 2.1(b) of [11],

if & satisfies (4.4) where [£y| < oo, then §, <&Vt >0. (4.6)

We now show this continues to hold even if |§3| = co. Unless otherwise indicated,
monotonicity of the rate function, ¢, is assumed in the rest of this section. Note
that ¢ is monotone iff c is. Therefore our hypotheses hold for c iff they hold for ¢.

Lemma 4.2. If¢ satisfies (4.4) then §t <¢ forallt >0 a.s.

Proof. By (4.6), we may focus on || = oo. Define

trllelo
Ay = Z/O /O (N0 + N*Y)(ds, du).

zel’

Then A is a Poisson process with rate 2|I’|||c||.c < oo and so has a sequence of jump times
0 < Ty < T, < ... increasing to infinity. It suffices to prove that §t < ¢ fort € |0,T,] for
all n, which we prove by induction. Assume the inequality up to, and including, time T;,.
On (T, Th41), §,(z) = §Tﬂ (x) < &7, (v) = &(x) for all z € I’ since the jump times of these
coordinates are clearly included in the jump times of A. For z ¢ I’, §,(x) =0 < & () for
all ¢, including those in (7},,T,+1). At T, +1 one considers the unique x € I’ for which
N jumps at T, for some i and uses the monotonicity of c to show that in each of the
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two cases Alr, () <0or A§Tn+l (z) > 0, one has éTn+1 () < &1, (z). This is done just
as in the proof of Proposition 2.1(b) in [11]. The remaining cases trivially lead to the
same conclusion. This establishes the induction step, and the n = 1 step is handled in
exactly the same way. O

If €. satisfies (4.4), then fA satisfies

o~

E(z) = Gola) + / / (1 - & (2)1(u < (o, £ ))N™(ds, du)
- /t /@,(x)l(u < é(x, & ))N*(ds,du), t>0,z€Z> (4.7)
0

Note that c has been replaced with ¢ and the roles of N*° and N*! have been reversed
from that in (4.4). We set { (z) = {o(z)1(z € I') and define §, = ¢ [, I'] as the unique
solution (by Proposition 2.1(a) of [11] because ¢ satisfies the same hypotheses as ¢) to

L) =@+ [ [0-E i g )N s
- /t /gs_(a:n(u <é(x, & ))N"O(ds,du), t>0,z€Z> (4.8)
0

So in the notation § we effectively take the hat first and then do the killing.

If M € N and & € {0,1}%°, we may set &, (@) = & (x) := &(2)1(z € (=M, M)?), and
denote the unique solution to (4.4) with this initial state by ¢M.
Proposition 4.3. (a) As M — oo, ¢M(z) 1 £°(x) for all v € Z2 and t > 0 a.s. Moreover
&° is the unique in law Feller process with rates c(z, £) starting at . If |§y| < oo then
£ = &[&o], the unique solution of(4.4).
(b) We have € (z) < &°(x), and € (x) < §°(x) forall z € Z*> t > 0 a.s.
(c) If ¢ is symmetric, then P(§ €)= Pgo (€ € -), where the right-hand side is the law of {

with initial state go' that is, the law of { Eo’ I'.

Proof. (a) By Proposition 2.1(b) of [11], £{M(x) increases in M for all (¢,z) a.s. and so we
can define £ as this a.s. limit. By (c) of the same Proposition the law of ¢ is that of the
unique Feller process with rates ¢ and initial condition &}7. Theorem B3 of [25] allows
us to apply Theorem 5.2 of [24] to conclude that the martingale problem associated
with the rates c is well-posed, and then Proposition 6.5 of [24] gives continuity of the
laws in the initial condition. This implies that £>° has the required law. If || < co and
& = &[&o] is the unique solution of (4.4), then monotonicity in the initial condition from
Proposition 2.1(b) of [11] shows that ¢M < ¢ for all t > 0 a.s., and so taking limits we
get £° < & forallt > 0 a.s. Since £. and £ have the same law, they must be identical.
(b) Let M > Mo, so that &) := &) (x)1(x € I') = £ () and therefore £, = £ := £ (&)1, I").
By (4.6), w.p.1 forany ¢t > 0,
=g <gh <

oM A . . . A M
Ifg, = gt( M 1), then, just as above with ¢ in place of c, §, = & - The process
fAtM =1 —¢M satisfies (4.7), and so we may apply Lemma 4.2 with ¢ in place of ¢ and the
roles of N*9 and N*! reversed and so conclude that

. M M —~
§t:§t <1-¢&" —w¢&°asM — o0 VEi>0a.s,,

and so deduce the second inequality in (b).
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(c) Under symmetry of c, § is the unique solution of (4.8) with ¢ = ¢, and so has the same
law as £ [§ o+ I'l, the unique solution of (4.5) with initial condition § ,» because (N z.0 No.l)
is equal in law to (N1, N#:0), O

In view of (a) of the above we will denote £° by &,[¢o] as it agrees with our earlier
definition for || < co. The reader will note however, we have side-stepped the general
question of pathwise existence and uniqueness of solutions to (4.4) when |¢y| = co. We
believe this to be the case by uniqueness of the martingale problem and monotonicity,
but will not need it.

(a) and (b) show that for any initial state &j, and corresponding § 0 and § ,» We may

construct (¢, ¢, g) on the same space such that
g, <&and§, <E(t) VE>0as. 4.9)

Here ¢ evolves according to rate ¢ with killing outside /', and § evolves according to rate

¢ with the same killing, while £ and 2 evolve according the rates ¢ and ¢, respectively
with no killing. Under symmetry, the dynamics of the two killed processes are the same
but of course the initial conditions differ. In the symmetric case this point seems to be
made implicitly in the proof of Theorem 1.1 in Section 6 of [13], but perhaps warrants
the explicit construction given above.

Turning to the complete convergence theorem, we first present an abstract complete
convergence in two dimensions essentially taken from [13]. If A C 72, vy € 7Z? and
e {0,117, let

Aleo,€) = {y € A: £(y) = 1,E(y + x) = 0},

Monotonicity is not required for our first abstract complete convergence theorem.

Theorem 4.4. Assume for 0 < ¢ < e, £ is a cancellative finite range voter model
perturbation with rate function c.(x, ). Assume also that for each ¢,

—

3z € Z? so that 1'f|§([)8]\ = oo then lim sup lim P,

[¢] [l — ) —
dm st R (e 0 A6 =0 =0

(4.10)

and
lim sup Ps, (¢F(0) = 1) > 0. (4.11)

t—o0

There is an €1 > 0 such that for e € (0,e1), there is a translation invariant symmetric
stationary distribution Vf/Q with density 1/2, satisfying the coexistence property, such

that for all initial ¢,
&7 = Bo(eb )00 + Boc (€55 p + Bi(elN01 ast — oo (4.12)

Proof. We first show that for ¢ < ¢, £I¥! is a good cancellative process (as defined in
Section 3.1). Assume not. By Remark 3.1, up to a constant time change, ¢[¢! is a voter
model with kernel ¢o(y) = Bo({y}). Therefore starting at f([f] =g, F] = 0 for ¢ large a.s.
(e.g. see Proposition V.4.1(b) of [24]), and this contradicts (4.11), completing the proof.

Under the above hypotheses, Remark 4, Corollary 3.3, and Lemma 4.2 of [13] show
that for some ¢; > 0, the hypotheses of Proposition 4.1 of [13] hold for ¢ € (0,¢1). (Note
that the good cancellative property is needed to apply Corollary 3.3.) That Proposition
implies the stationary measure vy /2 (from Section 3.1) satisfies the coexistence property

and

if |§([)6]| = oo, then ft[g] = Bol és])(SO + Boo(ﬁ,[f])uf/z + 61(5([)6])61 ast — oo, (4.13)
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where we have also used (1.3). The fact that 0 is a trap for 5[5] (by (1.16)) implies 5[5] is
symmetric by the equivalence of (3.3) and (3.4) noted in Section 3.1. Therefore v} /2 is

also a symmetric law (v] /2(2 €)= /2(~)) by the above convergence. By symmetry the

conclusion of (4.13) also holds if |§([f]\ = oo and so the proof of (4.12) is complete. O

Remark 4.5. As noted in the above proof, a cancellative finite range voter model
perturbation is symmetric.

The key condition in the above is (4.10) which will imply that a pair of nearby sites
with opposite type can be found in sufficiently large sets for large ¢. Such pairs are to be
expected if there is to be complete convergence with coexistence.

Assume now that for some ¢y > 0:

ForO0<e<eg, & (] is a cancellative and monotone finite range voter model perturbation in Z?.
(4.14)
By Remarks 4.1 and 4.5 we may apply Proposition 4.3, and so for any initial condition

o € {0, 1}Z2 construct &[], §[E], §[€] as solutions of (4.4), (4.5) and (4.8), respectively, with

,[f] = &y, all on a common probability space such that
g9 < and <l v 0as, (4.15)
We now assume that My = KL for natural numbers K, L chosen below. As in Section 3.2
B 3
we often use N > N(gg) > e satisfying ¢ = ey := % as our fundamental parameter.
Let
gv(x):gg?:}(\/ﬁx), x € Sn, (4.16)
and log N log N
og LN og N
XN = X > &V (2)d,, and X, = X g, (2)d,. (4.17)
z€ESN zeSN

The next condition is the key to ensure the survival of our oriented percolation process.
It specifies the values of K, L which are used above to define our killed particle systems
through M, = K L. Note that X' (1) = X ((— My, Mp)?) < oo.

There are T’ > 1, K, J' € N with K > 2, and L’ > 3, so that if
0<e<eg, and I, = +2Le; + [-L' +1,L' — 1), then for L = |V NL'|, (4.18)
XN([-L/,L')?) > J' implies P(XY,(I.) > J' forall e € {#e;,i = 1,2}) > 1 — 6 °K+1°,

Recall that if the conclusion of Theorem 4.4 holds we say for 0 < € < £ the complete
convergence theorem with coexistence (CCT) holds for £[€). We use this terminology
going forward.

Theorem 4.6. Assume for 0 < ¢ < ¢, £I¥! is a cancellative and monotone finite range
voter model perturbation in Z? satisfying (4.18). There is an ¢; > 0 such that for
e € (0,e1), the complete convergence theorem with coexistence (CCT) holds forf[s}.

Proof. We follow the general approach used in Section 6 of [13] for the d = 2 Lotka-
Volterra model. From Theorem 4.4 it suffices to establish (4.10) and (4.11), as well as
the fact that S éd) > 0 for initial conditions distinct from 0 and 1 (we have suppressed
the dependence on ¢ in ..). Remark 4.5 shows that ¢ is symmetric. Therefore, we
may use Proposition 4.3(c) to see that (4.18) implies that,

XN([-L',L)?) > J and X, (~L', L')?) > J' imply (4.19)
P(XN(Ii.) > J and Xy (Ise,) > J' fori=1,2) > 1 — 2. 6-52K+D?,
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To undo the scaling, recall L = |v/NL'| and let J = IOgLNJ’, T = NT' and set .., =
+2Le; + [—L,L]Q, i = 1,2. In order to use Theorem 4.3 of [16] we introduce a set
H c {0, 1}Z2 of “happy" configurations and a good event G¢, = G¢,(¢) in our probability

space for each initial condition &,. We let
H={ec{0,1}%: ¢([~L,L)?) > J and £([-L, L]?) > J}, (4.20)

and
Ge, = {8 (I1e,) >, g[;] (I+e,) > J fori=1,2}, (4.21)

where & is the initial condition for £, so that gf] () = 1p(x)é(z) and g)g] (x) =
1;/(2)&(z). Recall here that I’ = (—KL, KL)% For z € 72, o, : {0,1}%° — {0,1}%
is the translation map, o,(¢)(z) = o(xz + 2). Note that:

(i) G¢, is G(I' x [0, T])-measurable for each &.

(ii) If & € H, then on Gg,, ng] € oare(H) for all e € {tey, e }.

(iii) For any & € H, P(Ge,) > 1 —2-675CK+F)" .— 1 _ 4/,
Properties (i) and (ii) are clear from the definitions and the orderings in (4.15). Property
(iii) follows from (4.19), along with a bit of arithmetic on the rescaled intervals to show
VN Iie, C I;ei, where N > ¢3 is used. Finally another bit of arithmetic shows that
(1 —4)Y/@E+D® 5 1 _ 6-4 ensuring that (5.17) of [13] is valid. In this way we have
established the set-up of Lemma 5.2 of [13] and we can invoke the comparison with
2K -dependent percolation from Theorem 4.3 of [16], as carried out in Section 5 of [13].
In particular, we may use the proof of Lemma 5.3 of [13] to conclude that (4.10) and
(4.11) hold for ¢[l. Although the hypotheses of that result require d > 3 and f(0)>0
for a solution to a reaction diffusion equation (which is not defined in d = 2), those
hypotheses are only used to establish the set-up in Lemma 5.2 of [13], which we have
just verified directly, essentially using (4.18). The rest of the proof of Lemma 5.3 of [13]
only requires arguments for general voter model perturbations and, in particular, uses
its branching coalescing dual from Section 2 of [7] to bound some probabilities involving
¢lel. n this way the proof of Lemma 5.3 of [13] gives us (4.10), and the proof also gives
(this is (5.31) of [13])

inf P £ 0vi>0) > p, (4.22)

for some explicit p > 0. After the proof of Lemma 5.3 in [13], (4.11) is derived from
(4.22) using the above oriented percolation setting and elementary properties of voter
model perturbations, which apply equally well in our setting.

To prove the last assertion on 5., by (1.3) it suffices to consider 0 < \ﬁ([f]\ < 00 or

0< |§([]E]\ < o0, and by the 0 — 1-symmetry (Remark 4.5) we need only consider the first
case. By monotonicity and translation invariance we can take 5([)61 = dg. The fact that
0 is a trap implies P50(|§£E}| > 0) is non-increasing in ¢. Therefore (4.11) easily implies
Pj, (10 = 00) > 0. But Py, (r1 = 00) = 1 by (1.3), so we conclude S (¢f) > 0. O

Remark 4.7. The final paragraph in the above proof applies equally well in d > 3 to show
that the conclusion of Theorem 1.2 of [13] may be strengthened to include S ( ([)8]) >0
if ¢ is not 0 or 1.

Remark 4.8. Theorems 4.4 and 4.6 hold without the finite range assumptions. That is,
we only require that {¢ lo<e< €0} is a 2-dimensional voter model perturbation in the
sense of (1.10)—(1.15) of [13] (where the Holder rate of convergence in (1.14) of [13]
(see (1.14)) is also weakened to (1.15)). Indeed our proofs, and those quoted in [13],
only require these conditions. To verify the key condition (4.18), however, we will need
to work with finite range voter model perturbations and make a critical assumption on
the parameter ©5 + ©3 from (3.33).
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Theorem 4.9. Assume {5[5] : 0 < e < ¢gg} is a monotone, asymptotically symmetric finite
range voter model perturbation in 7Z? with ©5 + O3 > 0. Then (4.18) holds, perhaps with
a smaller choice of g > 0.

We give the proof in Section 10. It will follow from Theorem 1.15, our weak conver-
gence result to super-Brownian motion with drift ©; + O3.

We are ready for the proof of our main result, Theorem 1.9, a general complete
convergence theorem for monotone cancellative finite range voter model perturbations.

Proof of Theorem 1.9. By Theorem 4.6 it suffices to establish (4.18), perhaps with a
smaller ¢y > 0. By Remark 4.5, ¢[! is symmetric and so in particular is asymptotically
symmetric by Remark 3.6. The latter Remark also shows that r* = 0 and therefore
©5 = 0. Hence O3 + ©; = ©3 > 0 (by hypothesis), and so Theorem 4.9 gives (4.18), and
we are done. O

To apply Theorem 1.9 it would be useful to have a general, and checkable, sufficient
condition for ©3 > 0, which would also apply to the g-voter model, and so establish
Theorem 1.1 for d = 2 as a special case. This is the goal of the next section.

5 Positivity of the drift and the Proof of Theorem 1.1 for d =2

To establish a sufficient condition for ©3 > 0 in Theorem 1.9, it will be convenient
to first work in a more general setting with any general neighbourhood N (recall from
Section 3.1 that A is finite non-empty subset of Z¢\ {0}) and d > 2. We consider a
strictly subadditive map r : {A: A C N'} — R. This means that

r(AU B) < r(A) + r(B) for all non-empty disjoint A, B C N. (5.1)
By induction on n this implies that for non empty disjoint sets A4;,..., 4, in N,
r(Ur 4;) < ZT(AZ'), where strict inequality holds if n > 1. (5.2)

i=1

Later we will want to consider a finite range voter model perturbation and take r = r*.
Assume for now that d = 2. To motivate the above definition recall from (3.42) that for
the g-voter model in d = 2 we have r°(4) = TIAl where r, are as in (1.20). We saw in
Section 1.4 (recall (1.24)) that

Toi4ey < Tg + 70y for0 < ¢;, and #1 + 45 < |N| (5.3)

and so
for the 2-dimensional g-voter model, r° is strictly subadditive. (5.4)

Return now to our earlier setting with d > 2 and general V. If 7 is a partition of A/,
[0] denotes the cell of 7 containing 0 and || is the cardinality of 7. We assume (5.1) and
that all sets in a partition are non-empty throughout this section.

Lemma 5.1. If 7 is a fixed partition of N, then

Yo orA1Aem = > r(AIN\ A= ). (5.5)

0AACN D#AACN
The inequality is strict if |m| > 2.
Proof. The left-hand side of (5.5) trivially is

LN\ #0) > r(A)1(AemAcN\[0]),
D#£A
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while the right-hand side equals
(N [0)TA\ [0] # 0).

So to prove the result we may assume N\ [0] # (), or equivalently || > 1. Using
NN = Uner, acin o4

and the subadditivity (5.2), we have

rVA) < S rA)L(A e m A C N [0)),
0£A

thus giving (5.5). If |7| = 2 there is equality in the above, and by (5.2) there is strict
inequality if |7| > 2. O

As an immediate consequence we have:

Lemma 5.2. If 7 is a random partition of N such that

P(jr| >2) >0, (5.6)
then
E( 3 r(A)l(Aeﬂ) >E( 3 AW\ A= [0])). (5.7)
0A£ACN DA£ACN

Returning to our general r in d = 2, and recalling the definitions of % (A) from (1.10),
we define ©3 = O3(r) by

O3= > r(AOFA) = Y (A0 (4):=0] - 6. (5.8)
0A£ACN D£ACN

Note that this agrees with our earlier definition of ©3 in (3.33) if » = r® for the finite
range voter perturbations in Section 3.2. To use the above to show the positivity of
O3 in (5.8), recall K3(A;, As, A3) from Proposition 1.6 and the notation P (T") and P(T")
from Section 1.3. Recall also that (5.1) is still in force and the ¢-voter drift © in (1.22)
corresponds to the special case r(A) = 7)4] with r, as in (1.20).

Corollary 5.3. If d = 2, then ©3 > 0, and, in particular, © in (1.22) is also strictly
positive.

Proof. Let & = 3 14, 4, as1ep, i) K3(A1, A2, A3) > 0, where the sum is over sets, not

ordered triples, and the positivity is clear by \/\7| > 5 (see (1.2)). Define a random

partition in P3(N) by
P(ﬂ' = {A17A2,A3}) = Kg(Al,AQ,Ag)/K.

Both are well-defined by the symmetry of K3, and (5.6) holds because |7| = 3 a.s. If A is
a non-empty subset of A/, then

P(Aen) = > P(r = {A, A}, A3}) = > K3(A, Ay, Ag) /K. (5.9)
{A1,A2}eP(N\A) {A1,42}eP(NV\A)

Therefore from (5.8)

of = 3 ret)=x 3 r(A)P(A67r):nE( 3 r(A)l(AEw)). (5.10)
D#AACN PAACN DAACN
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Similarly, apply (5.9) with A"\ A4 in place of A to see that

0;:= Y rA)0 A=k Y rAP (J\/’\Aew)—nE< o J\/\Aew))

DAACN 0£ACN 0A£ACN

Note that for A C N we have 0 € N'\ 4, and so N'\ 4 € 7 iff [0] = N\ A. This shows
that the above implies

@g—mE( Y AW\ A= [])) (5.11)
D#AACN

So by Lemma 5.2, (5.10) and (5.11) we have @; > O3, and therefore, ©3 > 0. As noted
above, the positivity of © in (1.22) follows from the special case 7(A) = 4. O

Remark 5.4. If r(A) = | A| (not strictly subadditive!) one easily sees that equality holds
in Lemmas 5.1 and 5.2, the latter without any condition on 7. The above proof then
shows that
> JA|(®T(A) - 67 (4) =0. (5.12)
D#ACN
This identity simplified some of the formulae for ©3 in the examples of Section 3.2.

If r(A) = 1 for all A C NV (which is strictly subadditive), then from (5.10) we have
@;“ = 2k because there are exactly two subsets of A/ in 7 corresponding to the two sets
in 7 other than [0]. Similarly from (5.11) we get that ©; = x because there is exactly
one subset of A" whose complement in A is [0], namely A\ [0]. Therefore

Y. (0T (A)-67(4) =r= > K3(A1, Az, As) = lim (logt)*P(|BY| = 3)
PAACN {A1,A42,43}€P3(N) o
(5.13)
The last equality follows easily from the definition of K5 by decomposing }5(|B{\f | =3)
into the possible partitions induced by the sets of sites which have coalesced at time ¢
and taking limits.

The following corollary is immediate from Theorem 1.9 and Corollary 5.3. It repre-
sents our simplest criteria for a CCT to hold in d = 2.

Corollary 5.5. Assume d = 2, {5[5] :0 < e < e} satisfies (4.14) and r*, given by (1.18),
is strictly subadditive (i.e., (5.1) holds for r = r®). Then ©3 > 0 and there is ane; > 0
such that fore € (0,e1), the complete convergence theorem with coexistence (CCT) holds
for &lel,

To illustrate the use of the Corollary, we first show how it quickly gives Theorem 1.1
(which was already outlined in Section 1.4).

Proof of Theorem 1.1 for d = 2. We apply Corollary 5.5 above with ¢! the (1 —¢)-voter
model, €174, The cancellative property for |\/| < 8 is shown in Lemma 3.3 for ¢ small
enough, and the finite range voter perturbation property is established in Example 3.8.
The monotonicity of any ¢g-voter model is elementary (recall (1.4)). Strict subadditivity of
r® was already noted in (5.4) and so Corollary 5.5 gives the result. O

Recall from the examples at the end of Section 3.2 that for the Lotka-Volterra models,
affine voter models and geometric voter models, we have for non-empty A C N, r°(4) =
—(JA|/IN)?, r5(A) = ||j\4[|‘ + 1, and r°(A4) = W, respectively. All of these
asymptotic rate functions are strictly subadditive, as one can easily check. Condition
(4.14) was verified for all of these models in Examples 3.9-3.11, where for the Lotka-
Volterra model we take a; = ay > 1/2. The following theorems are then also immediate
consequences of Corollary 5.5. The first is the d = 2 case of Theorem 1.1 of [13] which
helped motivate the general result here.
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Theorem 5.6. Let d = 2, let N' be a neighbourhood, and let LV(«) denote the Lotka-
Volterra model with parameters a; = as = «. Then @é" > 0 and there is an «, € (0,1)
such that for all « € (., 1), the complete convergence theorem with coexistence holds
for LV(«).

Theorem 5.7. Let d = 2, let N be a neighbourhood, and let AV(«) denote the affine
voter model with parameter o. Then ©3" > 0 and there is an o, € (0, 1) such that for all
a € (ag, 1), the complete convergence theorem with coexistence holds for AV(«).

Theorem 5.8. Let d = 2, let N be a neighbourhood, and let GV(0) denote the geometric
voter model with parameter 6. Then ©3" > 0 and there is a 6. € (0,1) such that for all
6 € (6.,1), the complete convergence theorem with coexistence holds for GV().

Finally, we give the promised direct proof of f/(0) > 0 for the ¢ voter model and d > 3.
Recall that in this case r, is as in (1.20),

V]

- (€)1 (,€) = €} + €@ 1 {no(w, &) = £3), (5.14)

and f is given by (3.51).
Proposition 5.9. ([4]) Assume d > 3 and N is a fixed neighbourhood. Then f'(0) > 0

Proof. It follows from (3.51) and (5.14) that
[N [N

<Z7‘e§ (0,9 =0) —(d mEO1n(0,9=0) (515
(=1
= f1(w) = fo(w).

Let {B” : 2 € N} be the system of coalescing random walks introduced in Section 1.3
under P, but now in dimension d > 3, and let {¢4(z) : 2 € Z?} have Bernoulli product
measure with density u € [0,1]. Let m, € P(N) be the random partition determined
by the coalescing random walks {B¥,z € N’} using the equivalence relation z ~; y
iff o(x,y) = inf{u : B* = BY} < t, and let mo, = lim;_, 0o m¢. In this way © ~ y iff
o(x,y) < oo is the associated equivalence relation. If A C N and T € [0, ], let

[Alr ={x e mr: AN A # 0},

and, abusing this notation slightly, write [x]r for the cell of 77 containing z. Use the
duality between the voter model and coalescing random walk to see that

A ={ > nalEla=1Léwa=0))

0£ACN
[A] |N|+1—-]A]
= i E E P(B# (&Y (x) =1}, |BA =i
Tl_r)r;o T‘A| ( T C {x €0 (JJ) }’| T‘ (2

D#ACN i=1
N\ A w N\ A .
By (s () = 0}, 1BV =)
[A] [N]+1—]A]

= > nay Z lim P(o(A,N\A) > T, [[Alr| =i, [N\ Alz| = j)u’(1 —u)’

T—o0
0£ACN =1

4] |N|+17|A| ) ) 4

= > may, Y P(AN\A) = oo, [[Ax] =i, W\ Al = j)u'(L - u).
D#AACN i=1 j=1

(5.16)
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Differentiate the above at © = 0 and so conclude that

fO)= " raPe(AN\ 4) = oo, [[Alec| = 1).
D#ACN

Note that o (A4, N\ A) = oo iff A is a union of cells in 7., and so
(c(A,N\ A) =ccand |[A]o| =1) <= A€ Tw.

The above expression for f{(0) now becomes

f{(o):E( 3 r‘A‘l(AEﬂOO)). (5.17)
0#ACN

In a similar way to (5.16), we get

fo(u) = < Z Tal(€la = 0,€xna = 1)>u
P#AACN
A M| 41-14] i 7 .
= Z T|A|Z Z P(o(A, N\ A) = oo, |[Alc] =14, [N\ Aloo| = 7)1 — u)'.

0LACN i=1  j=1

Differentiating at u = 0 we get

f50) =" maP(e(AN\ A) = oo, [N\ Alc| = 1)
0#ACN

:E( 3 T|A‘1(/\7\A:[O]Oo)>. (5.18)
D#ACN

For the last, note that for A C , the event inside the P is precisely {N \ A = [0]oc}.
Note that P(|7s| = |N| 4 1) > 0 for d > 3 as there is positive probability none of

the walks coalesce, and so (5.6) holds. We now may apply Lemma 5.2 to conclude from

(5.17) and (5.18) that f{(0) > f}(0), and so f/(0) > 0. O

Remark 5.10. The above proof applies equally well to any {r, : 1 < ¢ < [N} satisfying
(5.3). In fact, with only notational changes, it applies to r as in (5.1) where f is given by
(3.51) and

o~

@, =€0) D rMIEN=14)+E0) D rAI¢EN =1axa)  (5.19)
DAACN DAACN

6 A general convergence theorem to super-Brownian motion in
two dimensions

In Section 4 we extended the SDE construction of our particle systems to allow for
infinite initial conditions and also simultaneously deal with E[E]. In this setting we have
no need to deal with these extensions and so no longer require monotonicity or have
to deal with the equation (4.7) for fA Assume the walk kernel, p, is as in the beginning
of Section 1.4 and {¢ l.0<e< €0} is an asymptotically symmetric finite range voter
model perturbation as in Section 3.2. This assumption will be in force throughout the
rest of this work. We continue to use notation from Section 3.2 and, as in that Section,
N > N(ego) > €3 is our fundamental parameter where € = ey = (log N)3/N. Recall from
(3.23) that the rescaled voter model perturbation, §N in (3.19) has rate function

CN(ac,{(N)) = NcN"”"(;v,f(N)) + (logN)CN’G(:U,§(N))+(logN)3cN’s(x,S(N)), (6.1)
z € Sy, €M e{0,1}5,
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N:s and ¢N2 are as in (3.20) and (3.21), respectively. Assume throughout that

where ¢
1667 < oo
By Remark 4.1 we can construct ¢V, as in Section 4, as the unique (F/)-adapted

solution of

N (x) = £ (2) + / / (1— €Y (@)1(u < ™ (z, €Y ) N*O(ds, du)
— /t/fiv(x)l(u <cN(x, N )N (ds,du), t>0, 2€ Sy. (6.2)
0

Then ¢V is the unique Feller process associated with the rate function ¢ (z,¢). Here
{N®% 2 € Sy,i = 0,1} are independent Poisson point processes on R; x R, with
intensity ds x du and {F}¥,t > 0} is the natural right-continuous filtration generated by
these point processes.

We again use this setting to couple spin-flip systems but now in a different manner
from Section 4. If EN(:E, ¢) is a rate function, also satisfying (4.2) and (4.3), such that for

£<¢,

N (@,€) > M (w,6) if §(x) = §(2) =0, 6.3

N (@,€) < M (,6) if () = {(x) =1, '
and & is constructed as in (6.2) using " (z, £), then

&Y > ¢V implies €N > ¢V forall t > 0. (6.4)

In Proposition 2.1 of [11] this is proved under monotonicity of ¢ when ¢% is a killed
version of £V, but the same elementary argument applies without monotonicity under
(6.3).

As in (1.32), define the measure-valued process associated with 5,{V(x), x € Sy by

XN = (/N > &V (@), (6.5)

TESN

We use the SDE (6.2) to see that X ¥ satisfies a martingale problem reminiscent of that
of SBM. Introduce the scaled probability kernel

pn(z) = p(zVN), = € Sy. (6.6)

Unless otherwise indicated, assume ® € Cy,([0, 7] x R?) is such that P = 92 ¢ Cy([0,T7] x
R?). Define

An®(s,z) = > Npn(y— =) (2(s,y) — B(s,2)),

yESN

and .
DN (@) :/ XV (AN®(s,-) + D(s,-))ds.
0

Introduce
é(j) B log N if j =2,
N 3 ep .
(log N)® ifj =3.

To be consistent with the notation in [9] for z € Sy and & € {0, l}sN we define
A2 (2, €) = E(x)c (2, €)

N,3 Y N,s N,s 6.7)
d™%(x, €) = ()™ (2,€) — E(2)e™ (2, €)
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and for j = 2,3,
(J)

AN (s, ¢ Z (s,2)dN (z,€), (6.8)
zESN
t
Di“ﬂ'(@):/ AN (s, €N, ®)ds. (6.9)
0

One may then use the stochastic calculus for Poisson integrals and integration by parts
to rewrite ¢ (z)®(¢, x), just as in Propositions 2.2 and 2.3 in [10], to see that

XN(2(t,) = X (2(0,) + D" (@) + D(@) + D(@) + MY (@), (6.10)
where M} (®) is a square integrable (F})-martingale with previsible square function
(MY(@)) = (MY(@))1e + (M ()2, (6.11)

with

(MY (@)1 4 —/0 IO]%]N Z ®(s, )2 (2, €Y )ds

zeESN (6.12)

(MN(®))o,, = / L S B(s.a)? [ N @, ) + 6N (@, €)) ds.

12
0 N TESN

Note that in spite of the suggestive notation the last term may in fact be negative.
The above three displays are reminiscent of the martingale problem (MP) for a super-
Brownian motion in Section 1.5. In the next two sections we will take term by term limits
in (6.10) to establish Theorem 1.15, our general weak convergence result. We restate it
below for convenience. Recall that o2 is as in (3.13) and 05, O3 are defined in (3.33).

Theorem 6.1. Assume {5[5] : 0 < e < gp} is an asymptotically symmetric finite range
voter model perturbation on Z2. If X} — X, in Mp, then

X" = SBM(Xy,4n0?, 02,0, + O3) in the Skorokhod space D(R ., Mp) as N — cc.

In Remark 1.16 we showed how Theorem 1.11, the rescaled limit theorem for 2-
dimensional g-voter models, follows from the above. We now describe a number of other
corollaries, all of course in two dimensions.

Example 6.2. (Lotka-Volterra Models). Recall from Example 3.9 that the Lotka-Volterra
Models discussed there constituted an asymptotically symmetric finite range voter
model. The kernel p is 15//|N| and so o2 is as in (1.1). Recall also that ¢[*~¥] denotes a
Lotka-Volterra model with parameters (al', al’), where

log N)3 log N
o =1 e+ 5 (og(1/ex)) ey =1 - LEND 4 gIoB
N N
and BN — B; € Ras N — oco. Let
&N (z) = @V N) for z € Sy, and X} = N, S &N ()5, (6.13)
TESN
If XV — Xo € Mp(R?) as N — oo, then Theorem 6.1 implies that
XY = SBM(Xy, 4mo?, 02,0 + 0L),
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where O} are as in Example 3.9. We can write these drifts in another way. Let e, e be
iid rv’s uniformly distributed over N and, using the notation from Section 1.3, set

K = E(K3(0,e1,e2)1(e1 # e2)), and v = E(K2({e1,e2},{0})). (6.14)

Then with a bit of work one can show that ©}' = K and 63" = (8, — $1). For example,
in the proof of the latter, the summand A arising in ©}' will be [e1]: (recall from the
proof of Proposition 5.9 this is the set of initial conditions in A that have coalesced with
e1 by time t) and then let t — oo. In this way the drift of the limiting SBM becomes
K + (Bo — $1)7. This is the form of the limit derived in Theorem 1.5 of [9] whose proof
will play an important role in the derivation of Theorem 6.1 to come.

Example 6.3. (Affine Voter Models). In Example 3.10 we showed the affine voter models
are an asymptotically symmetric voter model perturbation with kernel p(z) = 1x(z)/|NV],
0% asin (1.1), Oy = 0, and O3 = k = limy_,».(logt)*P(|BN| = 3) > 0 (recall (5.13)). Let

E\E,Jtv](x) x € 72 be an affine voter model with parameter a = 1 — e, and define fN and

X" asin (6.13). Theorem 6.1 implies that

if XV — Xo € Mp(R?), then XV = SBM(Xy, 4702, 02, k).

Example 6.4. (Geometric Voter Models). By Example 3.11, the geometric voter models
give an asymptotic symmetric voter model perturbation with p and o2 as above, ©; = 0
and 03’ = %@é" = %'K where K > 0 is as in (6.14). Let ¢[~] be a geometric voter
model with parameter # = 1 — ey and assume §N and X are as in (6.13). Theorem 6.1
implies that

2 W

if X' — X € Mp(R?), then XV = SBM(X, 4n0?, o ,TK).

Remark 6.5. We have started with a finite range voter model perturbation {c. : 0 < & <
€0} and rescaled to obtain rates ¢V asin (6.1). At times it may be more natural to start
with the rescaled rates ¢V for N > Ny > e3. Assume now that

N (@, 6™) = NV (2, 60) + (log N)e™ @ (2, €M)+ (log N) e (2, €M),
z € Sy, €M € {0,135,
where for some R-valued functions g;""**, ¢™** on {0,1}", i = 0,1,
M (@, €)= EVN)g " €y ia) T E@VN) €y (6.15)
and
M (2, €M) = E@VN) g™ €y ) + E@VNIGY €y n) (6.16)

We assume there are functions g;"*, ¢** on {0, 1}N, 1 =0, 1, such that

1

; N * )k N, Sk _

ngnm(%ngf = "o ) +Hlg™ V" = " oo =0,
=

and also that 0 and 1 are traps, that is, for all N and = € Sy, ¢V (z,0) = ¢V (z,1) = 0.
This setting clearly includes the N arising in (6.1), and in fact appears to be more
general since (6.1) requires &(zv/N)c™N@(z, €)= 0. To see that it is in fact included in
(6.1), define for ¢ € {0,1}%,

G5 (€) = gV (€) 4 (log N) 29 (€) = ¢°*(€) as N — oo, (6.17)
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and

gV (€) = g5 (€) + (log N) 2[g1 ™" (€) — go ™" (€)] — ¢>*(€) as N — . (6.18)

Then one easily checks that ¢ is as in (6.1) where ¢™* and ¢V¢ are given by (3.20) and

(3.21), respectively, in terms of the g;~ given above. Moreover,
9"(€) = lim (log(1/en))* (¢ (€) — 95~ (6))

= lim (log(1/ex))*(log N)"[g7" " (€) — 95" ()] = 91" (&) — 957" ().

lim
N—oo
= lim
N—oo
Use cV to define c.,, as in (3.18). Then {c. : 0 < ¢ < &g := ey, } is an asymptotically
symmetric voter model perturbation. Recalling (3.28), for A € N we have

r(A) = g"(1a) = 97" (1a) — 95" (Larya), (6.19)
while (6.17) and (3.30) give
rf(4) = lim g% (Ix\a) = ¢ (Ina)- (6.20)

If ¢ is the process with rate c., then (3.18) implies that & (z) = fj[f,fvl (VN') (z € Sy) has
rate function ¢V. Therefore if X* is as in (6.5), we may apply Theorem 6.1 to conclude
that

XN = SBM(Xjy, 4702, 02,0, + O3), where (by (6.19) and (6.20))

Oy = > (977 (1a)=g5 " (Iana)) K2(A,N\A), O3 = >~ g% (1a4)(07F(4) -7 (4)).
0£ACN 0#ACN 6.21)

Example 6.6. As a specific example of the above, recall the lower order weak limit
theorem for two-dimensional Lotka-Volterra models in [12], where now oY = 1+ IO%N BN
and BN — B;, i = 0,1. We continue to assume p(x) = 1x/|N|. This led to rescaled rates

(see (1.6) in [12])
M (@, §N)) = NV (a, ¢ M) +1og N (v N)BY fi(aVN, &) + £V N)BY folaVN, )2

So comparing with (6.15) and (6.16) above we have ¢V** = ¢®* = 0, and 977" (&) =

o~ ~

Bof1(0,€)? and gy (€) = B1f0(0,£)* = B1f1(z,€)?. So (6.21) implies O3 = 0 and
A _
2= (o= F1) 2. (w||)2Kz<A,N\ 4) = 88 = (B — A1),
0#£ACN

where 7 is as in Example 6.2, which also gives the above expression for ©}". Therefore by
Remark 6.5 and Theorem 6.1, if we define ¢V, and XV as in Example 6.2 and X2’ — X,
then

X% = SBM(Xy,4n0?, 02, (Bo — B1)7).

This is Theorem 1.2 of [12] but with a seemingly different parameter, ~, in place of the v*
in [12]. It is, however, easy to use Proposition 2.2 of [12] and (1.9) with n = 2 to check
that v* = ~.

7 Controlling the drift terms, and total mass bounds

The goal in this section (Proposition 7.16) is to show that for j = 2, 3, the drift terms
DN (®) arising in (6.10) behave asymptotically like 0O; fot XN(®,)ds, where ®,(z) =
®(s, ). Use notation from the previous section. In particular, ¢V is as in (3.19) with rate
function, ¢V, as in (6.1).
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7.1 Small time comparison bounds

We begin with some elementary bounds on the drifts. Let Ny = N/ V'N. By the
definitions of d™VJ(z, £), (3.27) and (3.29), we have

~

AV (2, &) =&)Y M UVNAYE oy = Loral,

P#ACNN
= > NV NAYE oy = Lasal,
0AACNN
dN’3(xa£) = E(LL') Z TN7S(\/NA)1{§‘I+NN = ]-:erA} - 5(!17) Z TN7S(\/NA)1{§|1:+NN = 1r+NN\A}
PD#ACNN D#ACNN
= Y MVNAHE iy = Lerat = Y PV (VNA Uy = Loraal
0AACNN 0#AACNN

(7.1)
Observe that at most one term in each of the above sums can be nonzero, and this would
require that £(y) = 1 for some y € = + Ny. This implies that for j = 2,3,

AN (2, €)] < |Ir[|1{¢(y) = 1 for some y € x + Nn} < [Ir| Y &(w), (7.2)
yEx+Nn

and hence
| (2, )] < |Ir]], (7.3)
and for ® : R, x R? — R,

(7)
@ (5.€,0)] < |,V 3 (o). 7.0

TESN

To control the drifts over small time intervals we will condition d™2(s,¢N | @) and
dN3(s, &N, ®) on FY,  for small uy and compare this small time evolution of £ with a
voter model, for which we can make explicit calculations using duality.

(N)

set £V (x,¢) = Syesn PNy — ) HE(y) = i}, ny (2,6) = 30 cpy He(z +y) = i},
p =min{p(y) : p(y) > 0} > 0, and introduce

:1—M5N—>1asN—>oo. (7.5)
p

We use the construction given in (6.2) with other rate functions to provide a coupling

of ¢V with some comparison processes. First, let dv’vm € {0,1}°~ be the rescaled voter

model defined as in (6.2) but using the rate function
NwncN"™(z,8), € Sy, € € {0,1}V,
Next, define the 1-biased rate function
(@, §) = Nuye"(@,6) + £@) (247" ) IrlQog NV (@.8). (7.6)

Let &Y be the 1-biased voter model constructed with ¢V'* as in (6.2).
We next verify (6.3) for ¢V and ¢"'?, that is we will show that for ¢ < &,

(x,8)

Mz, €)

Y

N i 47_.r =
N (z, &) if £(z) = E(x) (1)’ (7.7)

cV(x,€) if E(x) = €(z) =

IN

EJP (), paper . https://www.imstat.org/ejp
Page 41/80


https://doi.org/ 
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

The g-voter model and voter model perturbations in two dimensions

First combine (3.23), (3.27) and (3.29) to that for z € Sy and ¢ € {0, I}SN,

N(,6) = NV, &) +E6@) | 3 (oa NrV(VNA) + (log N)*r (VN AN (Elany = L a)

0AACNN
@] D (g NPV (VNANEian = Lerana)]
0AACNN
= NwycV '™ (x, €) +E(x)[ > (log NrVe(vVNA) + (log N)*r™* (VN A)1L(E]arnry = lata)
D#ACNN

+ N = wn) Y (,6)]

6@ D 1og NP (VNANElriny = Tarnma) + N1 = wn) S5 (@)
D#ACNN
= Nun "™z, &) + E(2) (z, ) + £(2)E) (x, €). (7.8)
If €|oyay = logana and p(vVNA) > 0, then

@) )

L yeVNA b
Use Lemma 3.7 and then the above to see that
- . s r .
F@Oz X (NP VI AUy = Loowaia) + o 10g N ,)
0£ACNN,p(VNA)>0 =
(N)
x, r
> —(1og 3| 228 I o v 0 ) < 0. 7.9)

More simply we have

N (2,6) < 2 10g M) + 1 (10g 33| ™ 7.10

&' (2,6) < |2[lr]|(log N)” + ’ (log N)”|ny " (,§). (7.10)

Turning to (7.7), assume now that & < &. If £(z) = {(x) = 1, then by (7.8),(7.9) and the
monotonicity of the voter model,

N (@,€) = Ny e (z,€) + & (2,€)
> NwNCN,vm(x7 6) > NwNCN,vm($7 g) = EN’b($7 5)7

the last by (7.6). If £(z) = £(x) = 0, then by (7.8) and (7.10),

N (z,6) = Nuy f{V(@,6) + & (2,€)

< Nuy £V (@,€) + 2+ p ) (log N)Pn™M (2, €) = &V(x, &),

where (7.6) is again used in the last equality. This proves (7.7).

More simply (7.7) also holds if ¢V (z,¢) is replaced with wyNcNV"(z,€). This is
immediate from the monotonicity of the voter model and (7.6). Having verified (6.3) for
two pairs of processs we may apply the coupling result (6.4) and conclude that if the
three processes ¢V, ¢VV" ¢N have the same initial state &', then with probability one,

eN < &N, and MV < €N forall ¢ > 0. (7.11)
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Use these processes to define the empirical processes of one’s, X}V and XtN""" respec-
tively, as in (6.5). We will need to compare these processes over small time periods. We
assume wuy satisfies

Cr12

<uyn < (log N)7? for some C7.12 > 0,p > 6, (7.12)

and recalling that as N > 3, we have uy(log N)3 < 1.

Lemma 7.1. For some universal C; 13 and all N, if ¢} = ¢}"'"" = ¢ then

E[XY (1) - XY (1)] < Cra3(log N)* P X} (1),
E[X) (1 ) XN VM(1 | < Cra3(log N> P X (1), (7.13)
E[|XN™1) — XY (1)]] < Cras(log N)*PXH(1).

Proof. For the first inequality, by Lemma 4.1 in [10], EXN (1) < @2 Dlrli(los N)*s xx N (1)
Set ® =1 1in (6.10) to get

BIXN(1)] = X0'( /EdN%sgs,l) a3 (s, €N 1)) ds,

where by (7.4), E[|d"N2(s, &Y, 1) + [dV3(s, &N, 1)[] < 2|r|[|NV|(log N)*E[XN(1)]. An el-
ementary integration by parts now implies E[XN(1)] > e 2I7lIINVI(esN)’s x N (1), The
above inequalities with s = uy give the first inequality. The second is even simpler
since then X""¥"(1) is a martingale. The final inequality then follows by the triangle
inequality. O

Let ® € C([0,7] x R?) and ||| denote its sup norm. Define |®| ip, respectively
|®|1 /2,5, to be the smallest element in [0, oc] such that

{|©(57I)(I>(Say)| § |(I>‘Lip‘x*y|a VSG [O,T},I,yERQ, (714)

|®(s —un,z) — (s, )| < |®|1/2,nv/un, Vs € lun,T],zc R2.

We will write [[®[|uip = [ @[l + [®[Lip, [ Pll1/2.8 = [®lloo + [®[1/2,5, @and [ @[l = ||l +
|®|Lip + |1 /2,5 We also will abuse notation slightly and write || ®|[Lip = [|Ps|loo + [Ps]Lip
for the usual Lipschitz norm of 2 — ®,(z) = ®(s,z). Note that since uy < ,/un for
N > ¢3, we have

if, in addition, ® € Cy([0,T] x R?), then ||, /5 x < ||| for all N > €. (7.15)
We will often suppress the dependence on NN in the above “norms".
We claim that for £ <7, j = 2,3,

@9 () = d¥I @ O <2l Y () - €w))- (7.16)

yEx+Nn

If ¢ # n on x + Ny, then the right-hand side is at least 2||r|| and so the above follows
from (7.3) and the triangle inequality. If {| 5, = 7|y, then the left-hand side is zero, and
so (7.16) is trivial.

Lemma 7.2. There is a constant C7;17; > 0 such that for j = 2,3, all T > 0,
® € Cy([0,T) x R?) and all s € [0, 7],

Eex [|dN (5,60, ®) — d™7 (5,657, @)|] < Cr.17]|®] o0 (log N)° 7P XY (1). (7.17)

UN unN
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Proof. Using (7.16) with n = and £ = 5 and in (6.8) we see that

[ Y Sw-alw)]

€SN ycx+Nn
= 2[r[[|N][|@ e 65 [X 2 (1) — X2 (1)].

71.N uUN
N,j cN N,j N ES\]T)
095, €2, @) — ™ (5,62, @) < 2lrl|@fe 2

Similarly;,
(5, €0, @) — ™ (5,620, )| < 20|V [X2, (1) = X2, (1)].
It follows that the left-hand side of (7.17) is bounded by
2[r [V @]loo (log N)? E[(XY, (1) = XN (1)) + (X, (1) — X" (1))].

uUN uN

Now Lemma 7.1 completes the proof. O

The next step is to consider E[d" (s, &)™, ®)]. Under a probability P, let {B"",z €
Sy} be a rate wy N, coalescing random walk system on Sy with jump kernel py and
for A C Sy let BtN’A = UzeA{B;N’I}. For finite nonempty disjoint A; C Sy define
oV (A, ... A,) and TV (A4, ..., A,) in the same way as o and 7 are defined in (1.6),
but with {BV* : x € Sy} in place of {B* : € Z?}. Similarly define o™ (x1,...2,)
and 7V (z1,...,r,) for distinct x; in Sy. If x € Sy, then introduce ol (A;,..., A,) =

N(zx+ Ay,...,z+ A,), and similarly for 7V (A;, ..., A4,).

The duality equation connecting the voter model ¢V with the coalescing random
walks {BtN‘”} that we need is the following (see Section III.4 of Lig85). For x € Sy, finite
disjoint sets A, B C Sy and & € {0,1}°¥,

By [TL 6@ TTa-&"o)] = B[ T] & BX [Ja-&'BM)]. 718

a€A beB a€A beB
For A C Ny define

P o 4) = JLa' @5 TI 0-a' @)

a€A beNN\A (7.19)
N (un, A ) = T €V BN [T &0 (B
a€NN\A beA
With this notation, (7.1) and (7.18) imply that
Ben (V2 (@, e)m) = Y rVVNAEIN (2, un, A, €))),
0#AACNN
By (@%@, €)= D rV (VNA) BN (@ ux, A &) = BV (@, A,6))))
0#ACNN
(7.20)
If we now define
. €(2)
AN jun, @) = 25 3 @(s,2) Y rVUVNAEIN (@un, A,6)] (7.21)
$€SN 0#£ACNN
AN un, @ Z B(s,x) Y v (\FA)( (TN (2, un, A, €Y)] (7.22)
JTESN 0£ACNN
— Bl (w,uw, A,60)]).
then for j =2,3,
Eex [d™ (5,607, @) = HY (&, un, @5). (7.23)
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Lemma 7.3. There is a constant C7 o4 such forj = 2,3, allT > 0, ® € C,([0,T] x R?) and
all s € [un,T],

‘Eg[z)v(dN’j(s,Sév,fI)ﬂfs )—HNIEN un, @iy )| < Crodl| @]l je n(log NPTEXDY (D).
(7.24)

Proof. By the Markov property, Lemma 7.2 and (7.23), the left-hand side of (7.24) is
bounded above by

C717||q>||00(10gN)6 nguN ‘HN] s uN7uN’(D ) HN’J( s— uN7uN’(I)S—uN)]"
(7.25)
Use (7.23) and then (7.2) with the voter duality (7.18) to see that the second term above
is bounded by

(J) N
1125 37 s, 2) — (s —uw, ) B[ 3 €, (B

:EGSN ye/\_[N
; ~r1
< lrlieh2vant Y- Blar Yo e+ B
yeENN zeSN
= 1] o |V log NP~ EXY,, (1),

S—UuN

Inserting this bound into (7.25) completes the proof. O

We next further decompose the A/, Consider 0} # A C Ny. If IN*(z,un, A, ) # 0
\/|, and by defining

LY (@ un, A, 6) = TN (@ un, A, &) BYT Y| = i), (7.26)

we can write
|V
IN’i(x,uN,A,E(])V) :ZI;V’i(I,uN,A,géV). (7.27)
i=2
Letting
(J)
DY un, A, ®,) Z (z,un, A, &) (7.28)

zGSN

and

AN2(EN uy, @) = Z TN’a(\/NA)E<h:£\’]27+(£éV7uN7A7¢S))

0AACNN
Y uv @) = 30 Y (VNAB(RGHEY un, A,80) = B (&) uw, 4, 9,)),
0AACNN
(7.29)
we obtain the decomposition
IV
HNI (&Y un, @) = Y HY (&) un, @), (7.30)
1=2

We will now obtain simple bounds on the summands in (7.30), leaving a more detailed
analysis of the main terms H, (&), un, ®,) and H3 ? (&), uy, ®,) to Section 7.3.

EJP (), paper . https://www.imstat.org/ejp
Page 45/80


https://doi.org/ 
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

The g-voter model and voter model perturbations in two dimensions

Lemma 7.4. There are constants C7.31, C7.32 such that for any T > 0, ¢ € Cy([0,T] x R?)
and s € [0,T1],

(N2 un, ®0)| < Cran 7] @s]loo(log N) -G XN (1), 2<i < N, (7.31)

VN2 un, ®)] < Crao|r || @s]|oo (log NP~ XN (1), 3<i < |V, (7.32)
and

VY€ un, ®)| < Craa |7 || @s|sp (log N)EP/2 X0 (1), (7.33)

Proof. We start with the observation that for ) # A C Ny and any a € A,

,x ,x+a Jx4+N _ T Jx+N .
1 (un, A, 607)] < 6T (BITHO BT = i} + & (B HIBIT Y| = 4.
(7.34)
We will bound E(|hf\;jE |) with this inequality. By translation invariance,

[(J) " N )
- 19(s, @) [E(& (BRI BRHY| = i)
:EGSN
E(J _
N Z Z |®(s, x)|EY (x + w)P (BNIJ““—ﬁc—i—w,\BiV]f"’Nﬂ =)
rESN WESN
9 _
N 7> (s, 2) &) (z + w) P(BY" = w, |BYNY] = i)
TESN WESN

< [0l X3 ()R P(IBYNY] = ).
The same bound holds if we replace B2;*™* with BJ'*, and thus we have shown that
E(In (& un, A, 80)]) < 2@l X3 (D)LY P( BN = ). (7.35)
By Remark 1.7, the lower bound on uy in (7.12), and the fact that wy > 1/2 for N large,
O((log N)' =), j =2,
O((log N)*~()), j =3,

Using this bound in (7.35) above, and substituting into (7.29) we obtain (7.31) and (7.32).
The proof of (7.33) is more delicate, as it relies on cancellation. For x € Sy define

QN (A) = {oN (A NN\ A) > un, 7Y (A, NN\ A) < un}. (7.36)

If [BNVN| = 2, and BY,"+4 and B,y NN\ are disjoint, then BL:ZHVMA — = BJ:* and
forany a € A, BY;**4 = Bl.*+*_ Thus

L (@ un, A6 -1 (@ un, A, &)
= (&' (BN (1 - &' (BY) - (1= € (BYr )b (BN ) {0 (4)}
(& Bt — Y (B ) RN (A)}
= 3 BN = wh{eY ()} - Y & (@){BYT = wh{d (4)},

weSN weSN

D P(IBYNY| =) = {

Now by translation invariance,

E[IéV,Jr(xquvA’f(])v) - Iév’i(xauNaAvf(])V)]

= Y Q@ WENMBY = w-a}{Q) (A)}]- Y &' (w)EN{BY = w—a}1{Q (A)}].

weSN weSN
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Plugging into the definition of h2 ) (50 ,un, A, @) gives

B0~ 1 v 4,0.) = LB S~ ) 3 ) [BOUBYS = w - ah1{0) (4))

wWESN rESN
~ BOBYY = w - 210 (4)))]

logN
> & E[@,w - B - o(s,w - B (A)}].
weSN
By the above,
~ _ logN a
‘E((hgg — )(fév,uN,A,fbs))]‘ > W) E(|®(s,w— BY) — ®(s,w — BYY)|)
wEeESN
logN a
< | Lip Zfo E(1BY - BX)

= |24 ]lLipXo' (1 )(10gN)3E(|a|+\B )

< [|@slluip X (1) (log N)* (¢/VN + /o2 4uy)
S C(N7 UQ)H(Ps”LipXO (1)(10gN)(6 p)/Q, (737)

2u1\7

where ¢ = max.c |e| and we recall from (3.13) that E(|BY0?) = 2wyo?s < 202s. Using
this bound in (7.29) we obtain (7.33). O

In order to use the above results to effectively handle the drift terms d":?(x, (N, @)
and dV3(x, (N, @) we must first obtain bounds on the first and second moments of the
total mass, which will play an important roll in what follows. Therefore we interrupt our
current analysis to handle the total mass next.

7.2 Total mass bounds

We now introduce a particular choice of uy, namely

ty = (log N)™19. (7.38)
Lemma 7.5. There is a constant C; 4, > 0 so that for j = 2,3, all'T > 0 and ® €
Cy([0,T] x R?),
AN (2,68, ®)] < (|| @] V16§ XN (1) Vs € [0,T] (7.39)
and
E[d™N (s, &), ®)|FX, 1| < Craol| @ XY, (1) Vs € [tn, T]. (7.40)

Proof. (7.39) holds by (7.4), while (7.40) follows from Lemma 7.3, (7.30), and Lemma 7.4.
O

Proposition 7.6. There exists a c7 41 > 0, and for T > 0 a constant C7 41 > 0 depending
onT, such that foranyt < T,

(a) E[X]N(1)] < (14 Crai(log N) )XY (13 xp(er.ait), (7.41)

[§
(b) Bl(X{7(1))?] < Cra(Xg' (1) + (Xp' (1))%).
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Therefore, for T' > 0 there is a constant C7 4o > 0, depending on 7', such that for all
s,t €[0,T],
EIXN(D)XY (1)] < Crao(X) (1) + (X (1))%). (7.42)

Proof of (a). By (6.10),

E[XN(1)] /WN ZE [dN (s, €] ,1)}ds+/

t/\tN —2

3
BB (s, )| FY.,, )] ds.

_ (7.43)
Use the two bounds from Lemma 7.5 (with ® = 1) and EE\J,) < (log N)3 in (7.43) to get

(t—tn)T

EXN(1)] < X (1) + 20|r/|W|(log N)? / " BN (D)ds + Crao / EIXN(1)]ds.

0
(7.44)
This implies that for ¢t < ty,

BIX (1)) <Xév(l)+2|TIIINI(logN)S/OtE[Xiv(l)]ds, (7.45)

and thus by Gronwall’s inequality, for ¢t <y,

E[XN (1)) < exp(2||r|||V](log N)?H) X{ (1) < exp(2[lr[[|V[(log N) 1) X' (1) < 2TV XN (1),
(7.46)
By plugging this bound into (7.44) we obtain for all ¢ > 0, (recall N > 3)

B (1] < X3 (1) + 12 W o M) X (1) + Crao | CBIXY (Dlds,
0

Another use of Gronwall’s inequality completes the proof of part (a). O

Before proving (b) we establish some preparatory results which will also be useful
later. Let

En= Y pn(y)log NP (0,y) > ty). (7.47)

yeENN

By Lemma A.3(ii) in [6],
lim Ky = 2no2. (7.48)
N—oo

From (6.10) we have
EXN1)? <4|xY ()2 + E[(MN(1)),] + E[D;"?(1)%] + E[D}?(1)?)]. (7.49)

Recall from (6.11) that (MY (®)); = (MY (@)1, + (MN(®))a,.

Lemma 7.7. For any T > 0 there is a constant C; 59 > 0, depending on T, so that for
any bounded Borel function ® on [0,T] x R? and all t € [0,T],

(MN(®))1, = /XN ((log N)®2 M) (- €M) ds+/ al, (@

[@12:5(l0g N) _
—X,'(1 7.50
\/N s ( )a ( )

where |m{Vg(q>)| < C7s0
and

)

t (3)
<MN(<I>)>zt=/O b (®)ds, where |[m3 (®)| < 2||r|[|N| @2 ]{,V X¥(1)ds.  (7.51)
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Proof. (7.50) holds by the corresponding result in Lemma 4.8 of [12]. Note that the
result there is actually an identity and bound for a generic state ¢ € {0,1}°V (although
it is not stated as such) and applies immediately to our setting as well. For (7.51) note
first that by their definitions, |c¢V%(z,&)| = [dV2(z,€)| and |cV* (2, €)| = [dV3 (2, €)|. The
second result now follows immediately by using (7.4) to bound the absolute value of the

integrand of the integrals in (6.12) for (M"Y (®))s ;. O
Lemma 7.8. There is a C7.54 > 0 so that for any bounded Borel ® on R?:
(a)
log N N N
N 2 X @ EE (BN (x4 y) > ty)) = KnXJ'(®) + Ex, (7.52)
TESN yGNN
where

|EN| < Cr.54|®|1ip(log N) 72X N (1). (7.53)
(b) If, in addition, ® > 0, then
E[Xﬁv((logNﬁféN)(wfﬁv))] < 07.54(H‘I)Hup(logN)_17/2Xév(1) + Xév(‘b)) (7.54)

Proof. (a) Let ¥y denote the left-hand side of (7.52). We may write BY* as  + B0
and sum over the values of B,f\fv’o to see that

log N

= Z Z Z pn(y — 0z +w))&) (z +w)P(B" = w,a™ (0,y) > ty)
z€SN wESN yENN
10 N
NS S b o) Y v PEE — 00 > 1)
€SN WESN yENN
253) +x@.

Use the implicit Lipschitz continuity of ® to see that

logN R
SIS 0 Yl (S X @@ +w) Y pvm)PBY° = w0 (0,y) > ty)

wESN rESN yGNN
< [@[Lip XY (1) log NE(|B°|) < |®@]ip XY (1) log Nv20 /. (7.55)
The fact that wy < 1 is used in the last line as well. Sum over z first and then w, to see
that Eg\?) = Ky X{(®). This gives (a).
(b) Assume now ¢ > 0. We will compare with the corresponding expression for {f\fv"m,

and use the duality (7.18) to compute the latter, and hence see that the left-hand side of
(7.54) equals

log N

ST B(@)pn () Bey €8, (2)€, (z +y) — &0 ™ @)E " (= + y)]

€SN yeEN
n logN Z Z (I)( )E[ N BN,a: ‘N BN,gc+y] (7.56)
N z)pn (y) £ ( tn )60 ( tn )]- .
r€ESN yENN

By the coupling (7.11), Lemma 7.1, and the triangle inequality, the absolute value of the
first sum in (7.56) is bounded by

1 N 3 vm
[0l =2 D2 D pn ) (BIEY (2) — &), ()] + BIEN, (@) — €0 (@)]
z€SN yeN
+ EIEN (@ +y) — &Y, (v + v)] + BIEN (v + ) — X" (@ + )
= 20|l (tog V) (ELXY, (1) = X3 (1)) + BLX (1) - X" (1))
< C||®|oo(log N)" XN (1). (7.57)
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The second sum in (7.56) is bounded by ¥y (the left-hand side of part (a)), and so (a)
and (7.48) give the required bound. O

Proof of Proposition 7.6(b). It now follows quite easily from Lemmas 7.7 and 7.8(b), as
well as part (a), that there is a constant C7 55 depending on 7" such that,

E[(MN(1))7] < Crss X5 (). (7.58)

Here one uses the Markov property and Lemma 7.8(b) to bound ft:; XN((log N) (§N) (6N))ds,
and the obvious crude bound on the integrand to handle the integral from 0 to ¢ .

Turning to the last terms in (7.49), we consider more generally E[(D./ (®))2], where
® : R? — R is Lipschitz continuous. We claim that for j = 2,3,

. _ tAtN
EIDN, (@)7) < [0 WPlog Mt [ XY @Pas],  7.59)
0
and there is a constant C7 g0 > 0 such that if to > t; > ¢y, then

E[(DY (®) — D7 (9))?]

< Crao(|@1Rspltz — 1) + @12 (log N )t A (12~ 1)) [ ELXN(1P)ds. (7.60)

t1

The proofs of the corresponding inequalities (66) and (69) in [9] apply here without
change if (41) and (48) there are replaced by (7.39) and (7.40) here, using Eg\?) =log N <
(log N)3. (The increment bound is stronger than we need here but will be useful later
in establishing tightness.) Now use (7.58), (7.59) and (7.60) in (7.49) to see there is a
constant C7 g1 depending on T such that if ¢ < T then

t
EX]N(1)%] < Cra | X (1)* + X3'(1) +/ E[X;V(1)2]ds] (7.61)
0
A simple Gronwall argument finishes the proof of Proposition 7.6 (b). O

7.3 Exact drift asymptotics and first moment measure bounds

Introduce, for § > 0,

ING.E) = / / L{jw—s)<spd X (w)d X' (2), (7.62)

IV =N (\ewllog Ny172,6). (7.63)

Lemma 7.9. There is a C744 so that for N > N(eg), distinct ag,a1,a2 € Ny, and
& {0,135,

and define

(IOgN)B 5 ,r+a ,x+a
N > P(&?(BZYV ) = ¢(BTT?) = 1,00 (a0, a1, a9) > tN)
reSN
1 _
< C7.64(WJN(§(JJV) + (log N) (1/2)X(1)v(1)>7 (7.64)
and
(logN) D N,z+a N,z+a
N > P(ééV(BtN ) =& (BTT™) = 1,0 (a1, a2) >tN)
zeSN
1
< Croa (g (@) + (log M)~ 02X (D)), (7.65)
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Proof. The proof of (7.64) may be found in the derivation of (46) in [9] with & = 1. See,
in particular, the bound on 7y (®) in that proof on pages 1214 and 1215, and note we
are setting n = 1/2 in the final display of Section 4.2 of that article. In that result the
stochastic process £Y (1) is a rescaled two-dimensional Lotka-Volterra model but may
be replaced in the proof by a fixed point &) € {0,1}°~ and so holds equally well in
our setting. The derivation of (7.65) is the same. One just replaces o (ag, a;, az) with
o (ay,az). Note that (1.7) is used in the proofs with n = 3 and n = 2, respectively. O

For nonempty sets A C N define

0} (A) = (log N)P(eN (A/VN, (N \ 4)/VN) > tn, 7™V (A/VN,(N'\ A)/VN) < t)
= (log N)P(a(A,N'\ A) > Nunty, T(A, N\ A) < Nwnty)
0y = > V)6 (4).
DA£ACN

By Proposition 1.6 and (3.28),

lim 6% = 0,. (7.66)
N—o0

Proposition 7.10. There is a C7 7 > 0 such that for any T > 0, ¢ € C,([0,T] x R?), and
0 <s,u<T with |u—s| <ty,

1

AN2(eN 0 @) -0V XN (@,)] < Oy 6r||® (7
(07 N ) 2 0( u) = 7.67” H tN].OgN

IN(EY)+(log N) 2 (1))
(7.67)

Proof. Inview of Lemma 7.4 we will start with the difference H2 (¢}, ty, ®,)—OY XV (®,).
Let ) £ A C Ny, and recall the definition of Qﬁ’(A) in (7.36), taking uy = ty. For any
fixed a € A,

Iy (atn, A &) = [67(BRy™) = &' (BT (BT HQY (A)), (7.68)

tn tN tn

and thus

|B(I " (2.t A 6))) — P(BI"H e €Y, QN (4))]
< Za(BgNN’m+a el B;’VN’“” cell,oN(x+a,z) > tN). (7.69)

If we choose an a = a(A4) € A for each non-empty A C My, define

~ log N A z+a
Qv ey = Y VBN S s P € gl (4))
0#£ACNN €SN
(7.70)

It then follows from Proposition 7.9 that for a constant C

.\ ~ 1
(6 v, @) = HY (€ b, @) < CJ@ e (™ (€0) + (log N) =0/ x5 (1) ).
tylog N
(7.71)
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To evaluate ﬁgf, for fixed A we have

N S s, ) P(BY € €50 (4)

/
TESN

log N

Z@sw Zﬁo x+w)P BN”a—ac—&—w,in(A))

zeESN weSN

logN Z Z (s, +w))e (x—|—w)p(BNa =w, QY (A))

r€SN WESN
l N
og Z Z@sx—l—w&)( w)P (BN“—w,QéV(A)).
rxeESNy wESN

As in the proof of (7.33) (see (7.37)),

5N S S (o) — b+ w6 2+ )

zeSN wESN

~

(BN,a _ ’U])
< OV @4lluip X5 (1) (log N)~HT/2.(7.72)
Summing first over z and then over w,

log N ST s+ w)e) (r 4+ w)P(BY = w, Q) (4)) = X (®,)(log N) P(Q) (4)).

zeSN wESN

(7.73)
Combining (7.71)-(7.73), summing over ) # A C N, and using the definition of N2 we
get

‘ (50 7tNa ) @NXO ( S)|
1

< C||® (7 N(eNY 1 (log N)- (/2D XN (1 )
< 01l (o N (6) + toe M)~V x ()
Now combine this with the easy bound |X{¥ (®(s, ) — X' ((u, )| < [®]1/2, 8 VINX{ (1)
and the boundedness of {04} to derive (7.67), but with I;TQN’Q in place of HN-2, Finally,
use (7.31) for ¢ > 3 and the above bound in the representation (7.30) for H N.2 to complete
the proof. O

(7.74)

The proof of Proposition 7.11 below, the analogue of Proposition 7.10 for HN3,
is more involved and requires additional notation. For nonempty finite disjoint sets
A, Al, A2 C ./\7 let

03 (4, A1, Ay)
= (log N> P(aN (A/VN, A1 /VN, A3 /VN) > tn, ™V (A/VN, A1 /VN, Ay JVN) < tx)
= (logN)gP(o(A,Al,Ag) > Nwptn, 7(4, A1, As) < Nwyty),
and define
ofta)= Y e)(A 4,4,
{A1,A2}eP(N\A)

0y (A= Y YW\ A4 4, 4),
{A1,A2}eP(A)

oyt = Y Ve E(4) (7.75)
0A£ACN

and 6 = @N + @év’_. Proposition 1.6 and (3.30) imply that if ©3 is as in (3.33), then
lim oY = 0. (7.76)
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Proposition 7.11. There is a constant C7 77 > 0 such that forany T > 0, ¢ € C,([0,T] x
R?), and 0 < s,u < T with |u — s| < ty,

1

HN3(EN oY x¥ (o,
(07 N7 ) 3 O( ) tNlOgN

< Crrrll@ll (e 7 (6) + (log ) T2 X5 (1) ).

(7.77)

Proof. Let us start with the difference HYN (¢, ty, ®,)—ON XY (®(u,-)). Assume () # A C

Ny. It is easy to see that if IV (z,tx, A, &) # 0, then exactly one of |B£YVA| or |BNNN\A|
must be 2, while the other must be 1. To account for these possibilities, we introduce

rtn AGY) = BN C & BYTH = 2, Bt c @Bt = 1y,

)

% 1{BNI+A Cfo ,‘BNZ+A‘ _ 1 BN-’I)"FNN\A CfO ’|BN2?+NN\A| 72}7

( )
]1V (, >)
X2 (@ v, A
AR )

1{B£\va,ac+A c 50 7 \BN erA‘ -1, BN T+ NN \A C 50 : |BN I+NN\A| 2}7
{B

BN JZ+A‘ _ 2 BN I+NN\A |BN I+NN\A| 1}7

C&w‘ Cfo;

N,z+A
X tN,A 60 tn

X
and for: =1, 2,

SyEY  ty, @)

log N ~ _
= Y N BN S e ) B (et A Y) 3N (ot A.E))
0AACNN rESN

It follows that

(" = I )t A E) = 007 =0 (et A6 + 06 =00 ) (@t A6,

and thus
HY (N tn, ®y) = 5001 (& by, ®4) + 222 (& tw, @,). (7.78)

The term i?év’l( .ty,®,) is small. This is because both X{v,+ and Xf[’_ are bounded
above by

> YBNrre e gl BT e ¢ ol (ao, ar, a2) > tn},

distinct ag,a1,a2 €N
which implies by Lemma 7.9 that

. N 1 -
5 2] < Cron( V) 190 (i (6 + G0 )2 ). 079

To handle f)év 2 it is convenient to define

. ) loo N)3 ~
Sy tn @) = > TN»(\/NA)% > o(s,2)E(xy  (x.tn, A, &))),

0£ACNN reESN
so that
232E v, ®s) = 25T b, Bs) = B30T (&Y v, ). (7.80)
Consider ZN’2’+ andlet ) # A C Ny. On the event defining Xé“’(x, tn, A, &Y) there must

exist nonempty disjoint A;, A, whose union is A’y \ 4, such that none of the walks starting
from the three disjoint sets A, A; and A, meet by time ¢y, BtNA;”A1| = |BN oz
and By "t B A2 €N Thus, if we define

ON(A, A1, Ay) = {oN (A, Ay, Ag) > ty, TN (A, Ap Ay) <ty ),
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then for any a € A and a; € A;,

BOG™ @ tn, A,6)) = > P(ON(A, A1, A0, BN € g BRI e &Y BN e &),

{A1JA2}E
PNN\A)
(7.81)

The next step is to see that we may drop requirement that BtNN’:’jJr“1 , BN:wtaz ¢ Eév
above. Observe that

’P( (A, Ay, Ay), BN:"He e g pNator ¢ g pNates ¢ EB)V)

_p( N(A, Ay, Ay), BNt € gév)

< P(oN(A4, A1, 42) > t, B € &, BT or BYPY e )

~

2 max _ P(oX(a,a1,a2) > tn, B e V. BT e €)). (7.82)

distinct a,a1,a2 ENN

IN

If we let

iéV’Q’Jr(g(])vatNa(I)s)
log N o z+a
= e WNA LB S g S PO (A, A1 4. B € ).
ACN rESN {Aq,A2}€
P(Nn\A)
(7.83)

it follows from the above and Lemma 7.9 that there is a constant C; g4 such that

SYETEN ty, @) — S PT(EN by, @)

1

< Craall@le (o

Mg + (log N)’l/zXéV(l)). (7.84)

Again, consider a fixed ) # A C Ny and let {4;, 45} € P(Nx \ A). By translation
invariance,

lo N3 z+a
% > ®(s,x)P ( Y (A AL Ay), BT € €))
z€SN
(log N)3
og Z Z O(s, 2)6p ( + w)P ( 2 (A4, A1, Ag), BNHG_HH_U})
€SN WESN
logN P(ay s
Z Z (s, 2 +w) el (@ +w)P(QO (4, Ay, Az), By :w)
T€ESN WESN
logN N N,a
Z Z (5,2 + w)&g (x +w)P (QO (A, A1, A2), By :w>.
r€ESN WESN

(7.85)
As in the proof of (7.33) (see (7.37)),

(log N)3 ~
og Z Z ‘ s,x) — D(s, 2+ w)) Eév(x—l—w)P(QéV(A’Al’AQ)?Bi\IQa:w)

rzeSN wESN

< Cr6]|®Lip X3 (1) (log N)~13/2. (7.86)
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For the final sum in (7.85), summing first over x and then over w yields

log;N Z Z sa:+w§O (z+w)P ( N(A AL, Ay), B —w)
reSN wESN

= ON (VNA,VNAL, VNA)XY (,). (7.87)

Combining (7.85)-(7.87) and using the definition of > we find that

(log N)? 5 N£+a N N N
‘7 > 0(s,2)P(Q (A, Ay, A2), BT € € )~ON (VN A VN AL VN A) XY (@)

!/
TESN

< Cr6]|®Lip X3 (1) (log N)~13/2 (7.88)

N,
\EN“@N tn, @) — @N+XN(<I>S>\SO7.86(' 3N')(logN>—13/2||<1>||Lipxév<1), (7.89)

and by (7.84),

S5 ) - VXY (@)

1

< 07.90||<D||Lip<m

N + (log N)‘l/QXéV(l)). (7.90)

In the above we have rescaled the sets and summed over subsets of A/ (or NV) instead of
N (or Ny). The same bound holds for the difference $5°% 7 (¢, ty, ®,) — OV~ XN (d,),
and thus in view of (7.78), (7.79), (7.80), (7.90), and the simple bound \Xo (P(s,-) —
XY (®(u,-)| < |®|1/2,8vVINXE (1), we conclude that

1

(&, @) — OV XY (@) < Crrrllel (™

(&) + (log N) 72X (1)).
Combine this with Lemma 7.4 and (7.30) to obtain (7.77). O

As an immediate consequence of Lemma 7.3 (with uy = ty), Proposition 7.10 and
Proposition 7.11 we obtain the following result.

Proposition 7.12. There is a constant C79; > 0 such that for j = 2,3, any T > 0,
® € Cy([0,T] x R?), and s € [ty,T),

B (.Y BFL,) — O X, (@)

1
§C7.91||¢||(WJN( M)+ (logN)~ 1/2X£VtN(1>>' (7.91)

Turning briefly to the martingale square function, and recalling (7.50) and the
definition of K from (7.47), we have the following analogue of the above.

Proposition 7.13. There is a (792 such that for any bounded Lipschitz continuous
®:R?>— R ands > ty,

(XY (tog NN (M DIFN,,) ~ Kn X, (@)

1
< C7.92H‘I’Hup(mf]v( N..)+ (logN)~ 1/2X§VtN(1)). (7.92)
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Proof. By (7.56) and (7.57),

N logN . .
B(XN (log Nof§™M (. €))) = ST 3T @@ EEY (BYE (BN + Ry
reSN yeNN
(7.93)
:= SN + Ry,
where
|Rn| < C||®|o (log N) P XY (1). (7.94)
Clearly
o N "
==y e VEEY (BN (@, +y) > tn))
re€SN yeNN
o N " -
- Y e VEEY (BN (BN 10N (@, +y) > tw)
€SN yeNN
= S}V—SN.

(7.65) shows that

1

s2|<C @m(i
ISN| < Creal| @] ivlog NV

N (&) + (log N)‘(1/2>Xév(1)). (7.95)

By Lemma 7.8 (a),
SN = En XV (®) + &y,

where

|EN| < C7.54|®|Lip(log N)7TT/2XN(1). (7.96)
Use the error bounds (7.94), (7.95) and (7.96) in the decomposition (7.93), and then
apply the Markov property to complete the proof. O

In view of the above results, to obtain exact asymptotics for the limiting drift arising

from the g-voter perturbation term as well as the square function of the martingale term,

tVin N N
'] s—tn

we will show that e lig ~ [ f )ds} is negligible for large N.

Proposition 7.14. Let (65 ) n>3 be a positive sequence such that limy_, ., éy = 0 and
liminfy_,oo VNO6x > 0. For any T, there exists C7.97, depending on T and {6y}, such
that for anyt < T, for any N > 3,

1)
B[N (6x,6N)] < Cror (ng(n + XN ) [5N (1 +log (1 + 7)) N } . (7.97)
ON t+on
The proof of this key result is similar in outline to that of the same result, Proposi-
tion 3.10 in [9], for Lotka-Volterra models, although additional complications will arise in
the present setting. We will prove it in Section 9 below but assume it in what follows.

Corollary 7.15. If T > 0 there exists a constant C7 93 depending on T such that for any
t<T,

1

tVin
—— _F U IN(EN, Vds| < Cros(log N)™V2(X (1) + X2V (1)?). (7.98)
ty log N . N

Proof. Given Proposition 7.14, the elementary proof of the above is identical to that of
Corollary 3.11 in [9]. (The bound in the final line of the proof there leads to an upper
bound as above but instead with (log N)~"*° for any § > 0 and n € (0, 1), and hence, in
particular, (log N)~1/?). O
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We are finally ready to give the asymptotic behavior of the drifts, DtN J (®),j=2,3,
and so prove the main result of this Section.

Proposition 7.16. For j = 2,3, any ® : R*> — R with ||®||;p < co and all t > 0,

lim E(‘Dg“f(@)—@j /txgv(cb)dsD ~0.
0

N—oc0

Proof. Lett € (0,T]. A little thought shows the above expectation is bounded by

tn AL ) tnVt ) ) 2 1/2
E(/ @ (s, €Y, )| ds) +E((/ A (5,6, @) — BN (5,6, @)\ FY,, ) ds) )
0 tn
tnVt )
FB([ T 1B@ s 9, - OF XY, (@)]ds) (7.99)
tn

N (t—tn)T N t
oy —eylielen( [ x¥)as) +leylelE( [

(t—tn)*

XN (1) ds).

Proposition 7.6(a) and (7.39) shows the first term is at most
C||®|| oo (log N3ty XY (1) = 0 as N — oo.

Use an orthogonality argument as in the derivation of (67) in [9] and also (7.39) to bound
the second term in (7.99) by

tn Vit 1/2
C|® |0 (log N3t/ [E(/t xN(1)? ds)} < O7|®|oo (log N)~13/2(14 X (1)) = 0 as N — oo,
N

where the inequality holds by Proposition 7.6(b). Since |@§-V — 0, = 0 (by (7.66) and
(7.76)), we may apply Proposition 7.6(a) to see that the last two terms in (7.99) are
bounded by

Cr[|®[| Xy (D[OF — 0] + tny] = 0as N — oc.

Finally we may use Proposition 7.12, Corollary 7.15 and Proposition 7.6(a) to bound the
remaining (middle) term of (7.99) by

Or||®||Lip(log N)V2(XY (1) + X' (1)?) - 0as N — oc.
Combining the above displays, we may complete the proof. O
Remark 7.17. If we keep track of the bounds in the above proof (and drop the |@§V — 0]
term) we get for j = 2,3,
t
E(’D;’V’J(cb) - @jV/ XN (@) dsD < Cr)|®|lip(1 + X2 (1)2)(log N) "2 forall ¢ € [0,T].
0

(7.100)
Proposition 7.18. For any ¢ : R> — R with ||®||,;p < co and all t > 0,

lim E(‘(MN(cb))t — 4o /t X;V(qﬂ)ds‘) ~0.
0

N—o00

Proof. Note that ||®|| i, finite implies that ||®?|| i, is finite. Arguing exactly as in the
proof of Proposition 7.16, using Proposition 7.13 in place of Proposition 7.12 and (7.48)
in place of (7.66) and (7.76), we get

t t
lim E(’/ XN (21og N®2 (SN)(-,ggv))ds—/ 47m?X;V(<1>2)dsD —0.
0

N—oo 0
Now use (7.50), (7.51), and Proposition 7.6(a) to complete the proof. O
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Define (P/N,t > 0) as the semigroup of the rate-N random walk on Sy with jump
kernel py. By translation invariance we can have PtN operate on functions on the plane,
even though Sy is the natural state space.

As an application of the control of the drift terms d”¥7 given by Proposition 7.16, we
obtain an effective bound on the mean measures of our rescaled g-voter models.

Lemma 7.19. There exists a ¢7.101 > 0, and for any T > 0 a constant C7.101(T) > 0 so
that for all t € [0,T] and any ¥ : R? — R such that ||¥||;p < T,
BIXN ()] < e X (PN (V) + Cra01(log N) H2(X (1) + X' (1)%). (7.101)

Proof. Fix T > 0, let t € [0,7] and ¥ be as in the Lemma, and let ¢ € R. Define
® € Cy([0,1] x R?) by ®(s,x) = e~ **PN ¥(z), so that

B(s,x) = —An®(s,z) — c®(s,2) € Cy([0,1] x R?). (7.102)

Let dV(s, &N, ®) = dV:2(s, &N, @) + dV3(s5,&N, @) and ©F = 6 + ©Y. By (6.10) and
(7.102) we have

E(XN(@(@t,) = XY (PN W) + /Ot E(dN (5,&N,®) — cXN(®)) ds. (7.103)

Now choose ¢ > 1VoV (supNZes @N) (recall (7.66) and (7.76)). It is then easy to see
(and in fact is shown in the proof of Lemma 3.5 in [9]-see p. 1232) that ¢ > 1V ¢ implies

@] < 2¢)|¥]|Lip < 2¢T, (7.104)

where the last inequality is by hypothesis. Now use (7.100) and (7.104) to deduce that

ot t
E(/ dV (s,€N, ®) ds) < / cB(XN (®)) ds+Cr || ¥]|uip(log N)~V2(1+XY (1)2), ¥t € [0, 7).
0 0
Finally use this in (7.103), noting that ®(¢,z) = e~“*¥(z), to complete the proof with
Cr.101 = C. O

8 Convergence to super-Brownian motion: Proof of Theorem 6.1

We assume the hypotheses of Theorem 6.1 whose proof is the objective of this section.

8.1 Relative compactness

A collection of stochastic processes {Y" : N > a} with sample paths in D(R, 5)
for some Polish space S is C-relatively compact iff for every sequence N 1 oo in [«, 00)
there is a subsequence {N}} so that YV converges weakly in D(R,S) to a process
with continuous paths. The same definition applies to a given sequence of processes.

Proposition 8.1. The set { X N > N(gq)} is C-relatively compact in D(R*, Mr(RR?)).
To prove this it clearly suffices to show that for every N, T oo (N, > N(gg)), {XVr1,

is C-relatively compact. To ease the notation we take NV}, = k as the proof in the general

case is the same. Hence we reduce to the case of showing {X¥ : N € N, N > N(eo)} is

relatively compact. This result will follow from Jakubowski’s theorem (see Theorem 11.4.1

in [P2002]) and the following two lemmas.

Lemma 8.2. For any ® € C}(RR?), the sequence { X" (®), N € N=N()} js C-relatively

compact in D(R4,R).

Lemma 8.3. For any e > 0, T > 0 there exists A > 0 such that

sup P (SupXtN(B(O,A)C) > s) <e.
NceIN=N(=0) t<T
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Proof of Lemma 8.2. We use (6.10) to establish C-relative compactness of { XV (®) :
N ¢ IN2N(0)1 by establishing the C-relative compactness of each of the terms on
the right-hand side. For the latter we proceed as in Lemma 6.1 of [9]. Consider
first {DN7(®) : N € IN=N(0)} for j = 2 or3. Use Proposition 7.6(b) in (7.60) and
min(a, b) < vab for a,b > 0, to see that for ty < s; < 55 < T,

E((DY7(®) = DI(@))?) < Or|[®|IEipl(s2 — s1)* + log® Nv/En (s2 — s1)*?)(X3" (1) + X3'(1)*)
< Orl| @121 (X3" (1) + X3'(1)%) (52 — 51)*/2. (8.1)

Moreover, we have from (7.39) that for j = 2, 3,
N (s, 6, @) < |N](log N)?|| @] X2 (1), (8.2)

and so by Proposition 7.6(b) for 0 < s; < s9 < ty,

2 (( / a6, ) ds)") < CIVI8]2, (X (1) + X3 (1)°) (g N) (52 — 1)?

< Ol 212, (X3" (1) + X3 (1)) (log N)* Vi (s2 — 1)*/?
< Ol12)1%(X5 (1) + X5 (1)) (2 — 51)*/2. (8.3)

The C-relative compactness of {DV7(®) : N € IN2N(=0)} is now immediate from D}/ =0,
(8.1), (8.3) and Kolmogorov’s criterion.

Turning to the C-relative compactness of { MY (®) : N € N=N(=0)}, as in Lemma 6.1
of [9], because the maximum jump of M~ (®) goes to zero as N — oo, it suffices to prove
C-relative compactness of {(M" (®)) : N € N=N(=0)}, From (6.11), (7.50), (7.51), and
the second moment bound in Proposition 7.6(b), we have for 0 < s; < so < T,

B((1rV(@))4, — ¥ (@),)) < Or @5y (X (1) + X (1)) (52— s1)”
+ C||<I>H§OE((/82 ZN ds)Q), (8.4)
where
zN = XN (1og Nf§M(€)) <log NXN (1), (8.5)

Using (7.54), the above upper bound, and arguing exactly as in the proof of (104)-(106)
in Lemma 6.1 of [9] (conditioning back in time by ¢ and employing the Markov property)
we can show that for T' > s > 51 > ty,

S2 2 P
E((/ zN ds) ) < Op(XY (1) + XV (1)2) (50 — 51)%/2. (8.6)
S1
For 0 < s1 < s9 <ty we may argue as in (8.3) using (7.51), (7.50), and the upper bound
in (8.5), to see that
N N 2 4 N N(1)\2 3/2
B(((N (@), = N (@))s,) ) < Crll @i (X8 (1) + X (1)) (52 — 51)*2.

Combine the above with (8.4), and (8.6) to conclude that

(¥ (@)~ (@),) ) < Crll sy (X5 ()X (1)) (s2-51)2 for 0 < s, < s < T.

(8.7)
The C-relative compactness of { (MY (®)) : N € N=N(c0)} now follows from Kolmogorov’s
criterion.
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Finally, the simple argument in Lemma 6.1 of [9] using Proposition 7.6(b) shows for
0<s51<s9< T,

(DY (@)~ DX ®))) < Cra(X (1) + XY (1))(52 — 1) (8.8)

(This is one place where the assumed regularity of ® is used.) The C-relative compactness
of {DN:1(®) : N € N=N(=0)1 follows as usual. As X' (®) — Xo(®) by hypothesis, the
above results give the C-relative compactness of { X" (®)}. O

Proof of Lemma 8.3. Let {h,, : n € N} be a sequence of [0, 1]-valued functions in C} (R?)
such that
1{\m\>n+1} < hp(z) < 1{|x|>n}> and SuthnHLip <C. (8.9)

For example, if h : R — [0, 1] is C*°, increasing, and L1251y < h(z) < 1p.50) we can take

hn(z) = h(|z| — n). It clearly suffices to show that for each fixed ¢,T > 0,
lim  sup P(sup XN (hy) > s) —0. (8.10)
MO N>N(eg) LT
By (6.10)
X[ (hn) = M{Y (h) + Y™ (hn), (8.11)
where

t
YN (hy) = XY (hy) +/ XN(Anhy)ds + DYN?(hy) + DYN?(hy,).
0

Now argue as in the derivation of (110) in the proof of Lemma 6.1 in [9], using (6.11),
(7.50), (7.51), the second inequality in (8.9), and (7.54) to conclude that for some e — 0,
independent of n,

T T
E((MY(h))r) <en+ | CrE(XY(h))ds <ex+ | COrXy (PY(hy))ds. (8.12)
0 0

In the last inequality we used Lemma 7.19 and absorbed some of the constants and
terms there into the Cr and . Chebychev’s inequality (recall (8.9)) shows that for any
K >0,

lim  sup sup PN (h,)(x) =0.

"7 N>N(eo) |#|<K,s<T

The tightness of { XV} now shows

lim  sup sup X (PN (h,)) =0, (8.13)
n=0 N> N(eg) s<T

and so the integral on the righthand side of (8.12) approaches 0 as n — oo, uniformly in
N. For each N fixed it is elementary to use (6.12) to see that lim,, E((M™ (h,,))7) = 0. It
now follows from Doob’s strong inequality L? and the above that

lim  sup E(sup M} (hn)?) = 0. (8.14)
MO N>N(eg) t<T

To prove (8.10), by (8.11) it now clearly suffices to show

lim  sup P(sup |V} (h,)| >¢) =0. (8.15)
MO N>N(gg) t<T
This is (115) in the proof of Lemma 6.1 in [9] for the Lotka-Volterra model, and the proof

given there now goes through without change in our more general setting. The required
inputs are (8.1), (8.3), (8.8), (8.14), Lemma 7.19, and (8.13). O
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8.2 Identification of the limit

Proof of Theorem 1.11. By the C-relative compactness, established above, it remains
only to show that the sequential limit points of {X"} coincide. By the Skorokhod
representation theorem we may assume that for a sequence Ny 1T oo, Ny > N(gg), we
have

XN 5 X € C(Ry, Mp(R?)) a.s.
We will take limits in (6.10) and (6.11) to see that the law of X satisfies (MP), the

martingale problem characterizing the law of SBM(X,,,4n02,02,0). To see this, fix
® € C3(R?). By Lemma 2.6 of [6] we have

[An® — (0%/2)A®|| — 0 as N — oo,

and therefore by Proposition 7.6(a) for all ¢ > 0,

lim E(‘/t XN (Ay®)ds — /t XN ((02/2)A®) dsD —0. (8.16)
0 0

N—o0

One now can use Propositions 7.16 and 7.18, and (8.16) to argue exactly as in the proof of
Proposition 3.2 of [10] and take limits along {/NVy} in (6.10), (6.12) to see that X satisfies
(MP) and so is SBM(X, ,4mo?,02,0). (Only the last two paragraphs of the proof there
are used.) The other inputs needed there are the C-relative compactness of { X (®)},
{MN(®)}, and {DV7(®)} for j = 1,2, 3, established in the proof of Lemma 8.2, as well
as (take s; = 0,55 =T in (8.7))

E((M™N(®))7)?) < C(T,®) forall N.

The latter allows one to conclude that the limiting M(¢) is a martingale with the appro-
priate square function. O

9 Proof of Proposition 7.14

We need an elementary bound for p (z) := NP(BN° = z):

P () g%forallwo,xesN,Nz& (9.1)

For example, see (A7) in [6].

Assume 6 > 0 converges to zero, and also satisfies

lim inf V NSy > 0. (9.2)

Fix T > 1 and consider 0 < ¢ < T. Let p}*(z) = pY (2 — z) and ¢7 = p," ; . Argue
as in the proof of Proposition 3.10 in Section 5.2 of [9], using the semimartingale
decomposition (6.10) to see that for a universal constant Cy 3 we have
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where
1)
To = FN Z X pt+6N //6Np2(t+6 —:C)dXév(x)dXéV(y),
zESN
Z 1),
€SN
WN Z M(¢7))2,t),
€Sy
3 3
- ZiN Z ((/ dN,] N ¢Z)d8)2) — ZT(J)
‘N 0 s -
Jj=2 €SN j=2
By (9.1),
CoadN N a\2
To < Tt o Xo (1)~ (9.4)

For Tz, use (6.12), [c™*(x,&Y)| = [d™?(z, &N, [V (2,61 = [dV3(x, €V,
Chapman-Kolmogorov and (9.1), to conclude that

7 < N / O S 5 v (o= [ )+ 100, ] )

r€SN zESN

< 0% (log Ny E(/O %(t—wm-l > 1 @, 62|+ 4, €2 ds )

TESN
(9.5)
From the bounds in (7.2) we have
1 ; idl v
= 2 YD) < S0 ST N @t e) = [rIIVIXN (1),
rESN TzESN eeNn

Use the above in (9.5) and conclude from Proposition 7.6(a) that

sxlogN) 1 C 1t (log N)*
T < 208 E(A PR (1)d5)§0T5NX0( )log(1+6N> . (9.6)

Turning to 77, from (6.12) and Chapman-Kolmogorov, we have

7= iw1oe NE( [ ol iasy O 3 pvly =o€ @8 ) + & @)l )] )

z,yESN
<C975N10gN/ (t—s+dn)” 1E< Z Z pn(e)eN (x fN(ere))d (9.7)
e€NN zESN
the last by (9.1). Set uy = 2= A (log N)~? for some p > 11. Note that (9.2) shows that
uy satisfies (7.12). If ¢V ¢ {0 1}SN, define
G (eN) Z > pn(e)EN (@)Y (z +e),
EGNN reESN

and for s > uy, let

Ans) = [B@VENFY L) - B3 o pv(@,, (BYNEL, (BY)].

eENN TESN
(9.8)
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The Markov property and coalescing duality for the voter model show that

An(s) = | Eex

s—upn

(GN(&ay)) — Ben | (GN(ER™)]- (9.9)
We assume that £N , EN (the biased voter model with rates as in (7.6)), and §N VM are

constructed as in (6.2) and (7.11), all starting at 5?\, (with finitely many ones as usual).
Now use the elementary inequality

m+k m m-+k m-+k
|H§Nxz IT V@) =TI @) I] & xl|<z|5% (@) (9.10)

i=m-+1 1=1 1=m-+1
£N777N € {Oa l}SNa T; € SN7

. _ _ . N, N =N
with m = k = 1, and the coupling £,/;'" V £’ < ¢

UN"’

to conclude that for all s > uy,

An(s) < By | (IGV(EX) = 6N Em))

= Fexy (N’ > owle) Y [Euy (0) = €, (@) + Eay (o + €) — €N ( +€))]

STUN eeENN TESN
N N,vm =N

+ [(Euy (@) = € (2)) + (Euy (2 +€) — € (@ + e))])

<2 (2X

s—upn

uN(l) — XN (1) - xNm(1)) < Clog N PXN, (D). (9.11)

S—UN

The last inequality holds by Lemma 7.1. For small s in (9.7) we will use the crude bound

Z > pn(e)el (@)l (@ +e) < XN(1). (9.12)

eGNN zESN

Use (9.8), (9.11) and (9.12) (the latter for s < uy) in (9.7) to see that

unVt

unN ANt
T <C(5NlogN/ (t—s+oy) tE(XN1 ))ds+C5NlogN/ (t—s+0n) 'E(AN(s))ds

unVt

+C§NlogN/ t—s—&-dN)*l ( ( Z Z pn (e fs uN BNI)& Un (ng,ﬁe)))ds
eENN TESN
unVt

un At
<COréylog NXéV(l)/ (t—s+6n) " ds+ Con(log N)PXN (1) / (t—s+0on) tds
0 u

N

—|—C(SNlogN/uNVt(t—s—&-(SN)_1 ( ( Z Z pn(e éVuN BNI\’,x)l(O'N<.’17,$+6)>UN)))dS

GENN rESN
=T+ T2+ T3, (9.13)

where the mean mass bound from Proposition 7.6 (a) is again used in the second
inequality. For s < un (< dn/2) we have s < dy/2 < (t+ dy)/2 and so

1)
Tix < Oroy log NXQ (un2(t +0x) ™ < CrXg' (1) 25— (9.14)
N
We also have

t
Ti2 < Con(log N)' P XN (1)1(¢ > un) log 1+ 5—) (9.15)

N
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Next use translation invariance of the coalescing walks, Proposition 7.6 (a), and (1.7) to
obtain

unVt
7'13<C’5N10gN/ (t—s+dn)" 1E(N, Zfs uy (W)

weSN

X ZpN Z (BNO—w—a:a (O,e)>uN))ds

eeNN rESN
tVun
< ConlogN[ Y pn(e)P(a™(0.¢) >uN)}/ (t—s+0n) BXY, (1))ds
eeENN unN
log N t—un +0on
< Opon XN (1) —22Y log (L UNTON
< OronXo (g vyy 1> ) Og( S )
< Cron X (1 )log(l + —) (9.16)
on

In the last line we have used 6y > ¢N~!/2 for N large (which we may assume), and
hence the same for uy. Use (9.14)-(9.16) in (9.13) to conclude

N
<crXxMNa log(1+ — . 17
T < Cr 0()[6Nog(+5N)+t+5N} 9.17)
We next decompose 7§(j ) as
(1) « 30N N N.,j N zy N,j N =z N 2
T S B(([ e o) - B )Y, ds) )
ZESN N
3(5 tVun ) 2
X E((f Eae e oiE, i)
zESN
6(5 un At
+ TN E / / dNJ 317&517¢ )de(327 52a¢ )d52:| dsl)
z2ESN
T(J) _~_75(7J3 (9.18)
Equation (7.2) implies,
C
N.,j N N N
— Z ¥ (2, €)] < Z K >l (x+e))] < Co10XN(1). (9.19)
xESN ESN  eeNn
Recall that o)
. Y .
AN (s,6N,¢%) = %gs: P sy (2 = 2)dV (2, 6)). (9.20)

For ’7‘3(13), use (9.20) (take absolute values and use the triangle inequality), do the sum
over z first, and then apply Chapman-Kolmogorov and (9.1) to conclude that

. un At S1 1 N
75%) = / / A NCo 1 (2(t + 6x) — 51— 52) ™" (9.21)

x Z ST BN (o, €3)] a9 (w2, €3)]) dsadsy.

z1€SN 2€SN

An application of (9.19) and the second moment bound (7.42) now gives

75(]3) < Con(log N)®(X' (1) + X' ( / / 2(t 4+ 0n) — 51 — 82) " ' dsadsy
< Con(log N P(x{V (1) + XV (1)?), (9.22)
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the last by a bit of calculus.
For 73(31) first use the orthogonality

2

E(H(dN’j(si7£g7¢z) - (dN’J(SZags ’¢2)| slfuN))) =0if S2 —uN > 81

i=1

to see that

T < By py £ /N /%wﬁ(ww (s, €, )+ B (109 (51, €Y, 0%) | 72, ) ) ds] s ).

Argue just as in (9.21), but now with a different product inside the integral, to conclude
that

i unVt S1t+un 1
T <Contos N [ [T 5 X 1 X el s )

uN ! r1ESN IzESN

2
x B(T] |14 (ei €)1 + B(a™ (@i, €)1 FN_,,)| ) dsads:.

i=1

Now bring the sums through the expectation and product and apply (9.19) to conclude

79 <oantion ) [ [T 0 o) - - s (XA W+ BEYWIFL))

G S1

x (XN + B IFY,,)) ) dsz|ds:

unVt s1+un
<Oy (log N)° / [ / (2t +6x) — 51— 55)"

uN S1

< B((XJ(D) + X1, ()X5(1)+ X5, )))d82}d81,

where in the last we have used the Markov property and mean mass bound from
Propostion 7.6. The second moment bound (7.42) from the same result therefore shows
that

unVt 1
Q(t — 81 +5N) —UN

2(t+0n) — 3
<Cron (XY (1) + X3 (1)) (log N)S~P1(t > un) 10g(%>

d81

T <Cron (XY (1) + XY (1)%)(log N)u /

N

<Cron (XY (1) + XY (1)*) (log N6~ 1og(2(t5;N5N)) (recall uy < dy)
—Or(XY (1) + XV (1)2)(log N)S Py [10g2 + log(l + %)] . (9.23)
Turning to 75(] ), for j = 2,3 introduce
H™ (& 2,u) = By (A (2,€,))), (9.24)

and recall from (7.20) that AN (¢, z, u) := By (dN (2, £3')) satisfies

]:IN72<£(1)\[7$’UN> = Z Na(fA)E( (.’L‘ un, A, 50 ))7

0A£ACNN (9.25)
AV wun) = 3 eV (VNAB(INT = 1N7) (@, uw, A,6)).
0AACNN
EJP (), paper . https://www.imstat.org/ejp

Page 65/80


https://doi.org/ 
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

The g-voter model and voter model perturbations in two dimensions

The Markov property of ¢V and then Chapman-Kolmogorov, imply that for j = 2, 3,
T(J)

tVun - s
([
_ 66NE(/t\/uN [/

The bound (9.19) and Proposition 7.6(a) show that

7 2 VI mun)| < By (5 3 107 (@.62)]) < CBgy (X2, (1) < CoaaXJ' (1),

mGSN r€ESN

2

)] H HN’j(gst_uN,xk, UN) dsz] d81>

301€SN z2€SN 2z€SN i=1 k=1

2
NJ
—s1— 82 HH Sk quxkauN) d32i|d31>
r1ESN x2€ESN k=1

(9.26)

Similarly we have
1

v D ENIEY 2 un)| < Coar X' (1). (9.27)

zeSN
Now use (7.16), the coupling from (7.11), and the triangle inequality to conclude that

a9 (2, €) — dM @, €M < ¢S (260 (y) — €N (y) — €N (y)) for j =2,3.
yex+NN
This implies that
1 , N N
7 O NI ) — AV (Y @ un)| < CEER, (1) - X2 (1) - X2"(1))

TESN
< C(log N> PXx}V(1). (9.28)
In the last we used Lemma 7.1. For j = 2, 3, define

tVun Z(J
75(]2)—66NE(/ [/ Z Z p2 (46N ) 51— (xa—z1) HHN’7 Sp— uN,:Ek,UN)dSQ}dSl).
u uN

N r1ESN z2€SN

Use (9.1), and then (9.26), (9.27) and (9.28), to conclude

. oy tVun S1 .
T - T < oo [ / (02 (20t + by) = 51— 52) !

N/ Z N/ Z ‘E(HHNJ Sk— UN’“T’C’UN HHN)J Sk— UN’Ik’uN))‘dSstl

T1€ESN z2€SN
tVun
<C(5N(10gN / / t+6N)_81_82) 1E(|:N’ Z |HN’J( 51 uN’mhuN)'}
r1ESN
1
< |7 Do NI EN L wa un) = HYI (D, wa,un)|) dsasdsy
T2€SN
tVun
+C§N(10gN / / t+6]\/‘)_51_$2) IE([N/ Z ‘HN’]( S2 uN,LL'Q,’U,N)q
ToESN
1
< |7 Do NI EN L mnun) = HYI (€N, anun)l|) dsasdsy
T1€ESN
tVun
gcaN(logN)ﬁ(logN)?’—P/ / (2(t+0n) —s1 —s2) TEXN_,  (D)XY_, (1))dsadsy
tVun
< CTéN(logN)_2(X0 ( +X0 / / t+ 61\[ — 81 — 82) d32d81
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In the last line we have again used Proposition 7.6(b). The above integral is uniformly
bounded in N and ¢t < T, and so for j = 2,3,

1735 = T8 < Cron (X' (1) + X3 (1)) (log N) . (9.29)

Next consider 7:;(?5) Fori € {2,...,|N|} and §) # A C Ny, recall the notation /"= from
(7.26), and let

HJYA(€6V5$7UN) = E(IZN’J’_(J},U,N,A7£6V> _I;V,_(xauNaA7£év>)'

Then from (9.25) and (7.27) we have

|V
N3 wun) =Y > N (VNAEN () xuy). (9.30)
i=2 §£ACNN
Letie {3,...,|N|} and § # A C Ny. On {BY.7+4 c &Y, BN v ‘BNz+/\7N| _

i}, there are distinct points by, by, b5 € Ny so that & (BY."™) = 1 and o2 (b1, b2, b3) >

u. The same conclusion holds on {BY;" ¥\ &N, BNatA C N | BNatNN | = i} It
follows from (3.31) that

V|
Yoo > I NAEN (Y w un)
i=3 ()AACNN

<C > B (BN 1 (0 (b1, ba, bg) > un)). (9.31)

b1,b2,b3 €Ny distinct

In the right-hand side of the above, sum over the possible values of B{L\’&“bl, as in the
proof of Lemma 7.8(a), and then use (1.7) with n = 3 and (9.1) to conclude that

I
> Bleriom@ = e)[Y D0 VN ANy w2 )]
z2€SN i=3 0#ACNN
< Co32(log N) 2 (2(t+ 0n) — s1 — s2) ' XN _, (D). (9.32)

The same reasoning as above gives for all s > uy,

IV

T X X N VRAINE )] < Cossllog N) X, (1)
z€SN =3 PAACNN
(9.33)

Next consider the contribution to 7;(_’32) from the ¢ = 2 term in (9.30). For uy < s; <t
r; € Sy (i =1,2), and k = 1, 2, define

®(537k7m37k)(5k, Jfk) == pé\ét+5N)_sk_s37k(xk - 'r?)—k) = pé\gt+51\1)—81—82 (332 - xl).
By Lemma 2.1 of [9], we have
[ @553 (s, ) |[Lip < Co.34(2(t + On) — 51 — 52) /. (9.34)

For k = 1, 2, by the definitions of ﬁév’g in (7.29) and f{é\,]A' and (7.28) we have,

Ll —a1) Y rNI(VNAHY A (EN T un)

TR ESN D#ACN

— (log N)_3|[:_Iévl3(§éi7UN7uN7 @(szmwsz)”

< Cos5(2(t +0n) — 51— s2) 72X (1)(log N)7#/2, (9.35)
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where in the last line we used (7.33) and (9.34). For each ) # A C Ny we choose a € A.
A much cruder calculation than that above shows that,

N Z Z rs (VN A) H2A(§sl un s L1, UN)]

IlESN 0#£ACN

IS S B[ B e BY)

r1ESN DAACN

1(|Bi\fl\,7x1+A| _ |szx\7¢xl+NN\A| BN z1+a £ BN acl))

" D a
= % Z fﬁ,uN(w) Z [P(Bi\;’, :’lU—l'l,O'N(O,a) >UN)

wWESN r1ESN

+ ﬁ(fo\’ro =w — xl,UN(O,a) > uN)}

=2|r|XN_, . (1)P(a™(0,a) > un) < Cozs X _,, (1)(log N)7*, (9.36)

the last by (1.7) with n = 2 and uy > ¢N~'/2 (by(9.2)). Now argue exactly as in the
derivation of (89) in [9] following the derivation there from just below (88) to (89). Here
the hypotheses (85)-(88) of that argument are provided by (9.35), (9.36), (9.32) and
(9.33), respectively. From this derivation we may conclude that

R tVun S1 1 1
3
1755 S65N(10gN)6/ / E(ﬁ > g > Ptrsn)—s1—ss (T2 — T1)
UN UN
|

T1ESN T2 ESN
{Z Z (\/>A)H (sk un ThrUN :|)’d52d81

1 =2 0£ACNN

::]w

X
k

tVun s1 XN 1 XN 1
<C5N/ / (X (D)X ( ))dSstl(log N)5=P/2((log N)~! + (log N)~3)
uN (t+5N 751752)3/2

tVun S1
+05N/ BXN L (DXN (1)t + 6x) — 51— s0) dsads,

<Cron (XY (1) + XY (1)?). (9.37)

In the last line we have used (7.42).
The corresponding bound on 75(22) is much simpler. The analogue of (9.31) is

N
> > IV UYNABE (un, A, €) < CXJ (1) (log N)
=2 Q£ACN

Now proceed as in (9.32) using the supnorm bound on pé\EtMN_sl_” (z1 — x2) to see that

S1—UN S2—UN

tVun s
72 < C(SN/ / (2t + 6x) — 51— 50) " B(XN_. ()XN_ (1)) dsydss
< Cron (XY (1) + X (1)?). (9.38)

Finally use the decomposi_tions (9.3) and (9.18) along with the bounds on 7y, 75, 71,
Tas Tot, 17| from (9.4), (9.6), (9.17), (9.22), (9.23), (9.29), (9.37) and
(9.38), respectlvely, to see that

B[ [y aXF @aXY 1)) < Or (X Q438 W05 (14108 (145 ) #4007 ).
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The result follows by noting that log(l + %) + (t + 6n)~ ! is bounded away from 0
uniformly in N, ¢ > 0 and so we can drop the initial 1 on the right-hand side. O

10 Proof of Theorem 4.9

We assume the hypotheses of Theorem 4.9, and work in the setting of Sections 4
and 6, so that the monotone, asymptotically symmetric voter model perturbation, {{ [e] .
0 < e < go} is constructed as in Proposition (4.3)(a), along with it’s associated measure-
valued process X" in (6.5). For real numbers Ky, > 2and L' > 3, let I = [-L', L"),
I = (-KoL', KL')?, and recall the notation Ii., = +L'e; + [-L' +1,L — 1], i = 1,2,
from (4.18). Recall also that N is chosen as in (3.16). We construct our killed processes
5[5] as in (4.5), where killing is done when |z| > M, := L\/NKOL’j (x € Z?). We define
§iv(a:) = gf/;](\/]vx) for x € Sy as in (4.16), and let &M (z) = ][f,f](\/ﬁx) for x € Sy as
in Section 6. The killed measure valued process &N is defined as in (4.17) and so the

killing here is done for |z| > KoL’ (x € Sy). By Proposition 4.3 (a),(b) our processes are
therefore coupled so that

¢V < ¢V and hence XV < X7, (10.1)

Recall from Section 7 that (P}¥,t > 0) is the semigroup of a rate N random walk on
Sy with step kernel py. For z € Sy let BY* denote a random walk starting at z € Sy
with semigroup (PY).

A key step in verifying condition (4.18) is to show that the killed and unkilled pro-
cesses are close on certain time scales through the following version of Lemma 8.1 of
[9]. We stress that for now K, and L’ are arbitrary real parameters.

Lemma 10.1. There is a positive constant c19.; and a nondecreasing function Cyg1 :
R, — R, so thatift >0, Ky > 2 and I’ > 3, and X = X{' is supported on I, then

EIXN(1) - x¥(1)] < x¥(1) [cw_lecm»ltp(sg IBNO| > (Ko — 1)L — 3)

+Coa (1Y XY (W)og )V a0

The Lemma is proved below but we first turn to the main result of this Section. Given
Lemma 10.1, the proof of Theorem 4.9 is done just as the proof of Lemma 6.2 of [13] (for
Lotka-Volterra models). We outline the argument below for completeness.

Proof of Theorem 4.9 (sketch). Recall that we must show, after perhaps reducing g, that

There are 7’ > 1, K,J' € N with K > 2, and L' > 3, so thatif 0 < € < ¢,
then for L = |VNL'|, X} ([-L', L']?) > J' implies
P(XN(I.) > J forall e € {+e;,i =1,2}) > 1 — 6 5CK+D*, (10.3)

Note first that our hypotheses imply that Theorem 6.1 holds. The limiting super-Brownian
motion in that result has drift ©, + ©3, which is positive by hypothesis, and therefore
will continue to grow exponentially up to time 7" with high probability if it has a large
enough initial mass. It is therefore not hard to prove an analogue of (10.3) for this
limiting process (see (6.7) of [13]). By the convergence theorem (Theorem 6.1), the
same bound will hold for X% if N is large enough, and so ¢ is sufficiently small. This is
where we may need to reduce ¢y. Here we also use monotonicity to reduce to the case
where X} is finite and apply a subsequence argument to assume these initial measures
converge and so the convergence theorem holds. To derive the same bound for X N and
hence gain the necessary spatial independence required for our comparison to oriented
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percolation, we need to show X% is close to X]TV/. This is where Lemma 10.1 is needed.
The inputs required to carry out the proof of Lemma 6.2 of [13] are Lemma 10.1 and
the weak convergence of the rescaled process to SBM with a positive drift, given here
by Theorem 6.1. Our definition of I, for e = +e¢; is slightly different from that in [13]
but it results in only a trivial change. Also we have been a bit more careful in choosing
integer parameters here. So once K € IN and L’ > 3 are chosen as in the proof of
Lemma 6.2 of [13], one takes N large and sets L = L\/NL’j (as in (10.3)), and then
chooses Ky = Ko(N)(> 2) so that KoL'v/N = K L. (In this way K is comparable to K.)
This equahty ensures killing for the unscaled process outside (—K L, K L)? corresponds to
killing X X" outside I as in Lemma 10.1. (Note that Ky may depend on N in Lemma 10.1.)
The rest of the argument is now identical to that of Lemma 6.2 in [13]. O

Recall from Section 7 that {BN® : z € Sy} is a system of rate wy N coalescing
random walks in Sy with step kernel py. Let T/, = inf{t > 0: B}"" ¢ I}, let A denote a
cemetery state, and define a “killed” coalescing random walk system, {Eiv * x € Sy}, by

N BN ift < TV
Bt = .
A ift >1T).

We define the killed random walk BN’GC (recall the step rate here is N and there is no
coalescing) in the same way and denote its associated killed semigroup by (Biv ,t>0).
Of course, B,"" = BNJL = Afor all z ¢ I. We will use the convention that £(A) = 0 for

all € € {0,1}~.

Proof of Lemma 10.1. We follow the proof of Lemma 8.1 in [9] for 2-dimensional Lotka-
Volterra models, but some modifications are needed. Assume X' (and hence ¢ = f )
is supported on I = [-L’, L’} and T’ > 0. Let f : Sy U {A} — R with f(A) = 0 and set
®(s,x) = PN . f(z), s <t. We will assume ¢ € [0,7"] in what follows. The killed analogue
of (6.10) is derived as in the proof of Lemma 3.2 of [11] where a general class of voter
model perturbations is considered. The argument there uses a different representation
for the perturbation but applies to our representations without change and gives (see
the last display on p. 113 of [11])

XN =xN@eN ) / ZdN’J N ®)ds + MY (®), (10.4)
where MY (®) is a square-integrable, mean zero martingale. Next, choose » : RZU{A} —
[0,1] such that h(A) =0 and

[—K()L/ + 3, K()L/ — 3]2 C {h = 1} C Supp(h) C [—KQL, + 2, K()L/ — 2}2, ‘h|Lip <1,

and define, for s < t and = € Sy, ¥(s,2) = PY ,h(z). By Lemma 8.4 in [9] there is a
constant Cig.5 > 0 such that

||\I/||N < 010.5 for all N. (105)

By (7.103) (with c =0 and ® = 1), (10.4) (with & = ¥ and f = h), the inequality h < 1
and X} = X{', we have

EIXN(1) - X (1] < E[XY (1) - X7 (h)]

t 3
_xY(1-PNh [/ (@ (5,6N, 1) — aV (s, €8, W) s,
0 23
j=2
(10.6)
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It follows that
BIXN() - XN (1)) < U + U +Us + Us + Uy, (10.7)
where
Uy = X (1 - PN(n)),

tnAt 3 )
U =E / ZdNJ 5, €N 1) dN’J(s,éiVAIJ))ds],

- tVin )
Uy = E / ZdN’J(s, 5,1—\1/)ds],
i <

- tVin
Uy =B [ @568 W) - V(5,67 0) s,

L tn

- tVtN .
U =E / (@ (s, €Y, W) = aV3(s,€", w)) ds]

LJtn

The labeling matches that of (127) in [9].

We claim that there is a positive function Cjg.9 : (0,00) — (0, 00) and positive constants
K, c10.10 such that for any ¢ < T”, if | - |, denotes the L> norm on R?, then

Uo| < X(J)V(l)P(sup IBNO|o > (Ko — 1)L’ — 3), (10.8)
u<t

Uy | < Croo(T") X4 (1)(log N)?tw, (10.9)
] < x3V(1) [Clo.mecm'wtp(SUp BN > (Ko — 1)L — 3)
u<t

+cm.g<T’><1val))(logN)*”] (10.10)
U] < Croo(T')(log N)VS(XN (1) + X (1)) + K / EIXN(1) - XN(1))ds, j = 3.4.
(10.11)

Assuming (10.8)-(10.11) for now, and recalling that ¢tx = (log N)*19, we see that for
some function C : (0,00) — (0,00), and all t < T",

EXN(1) - XY (1)) < XV (1) clo,loecm-th(supl B

s<t

> (Ko — 1)L/ — 3)
+C(T)(1V X' (1))(log N)*l/ﬂ +2K /t EXN(1) - XY (1)]ds.
0

By replacing C(7”) with infp>7 C(T) we may assume that C(-) is non-decreasing.
Now take 7’ = t in the above and use Gronwall’s inequality to complete the proof
of Lemma 10.1.

Thus, our remaining task in this section is to verify (10.8)-(10.11). Equation (10.8) is
(128) of [9] (which uses the fact that XéV is supported on I and so applies here as well).
Equation (10.9) follows from (8.2) and its counterpart for § N (the proof is the same), the
mean mass bound Proposition 7.6(a), and XN < XN,

The derivation of (10.10) follows that of (130) in [9]. Since it does not involve §£v we
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can apply the bounds from Section 7. We have

o

g‘E(/t;WN g (B(@V (5,68, 1= W)|Fy_yy) OV XN, (1-0, ) ds)‘

tVin
+‘E(/ (0 +0)) XN, (1= W, 1) ds)]
tN
=|Aq] + |Agl. (10.12)

For A, first use Proposition 7.12 and (10.5), and then Corollary 7.15 and Proposi-
tion 7.6(a) to see that for some C1g.13(7”) (and all ¢t <T")

|A1] < Croas(T")(log N)~H2(X' (1) + X' (1)%). (10.13)
For A, use (7.66), (7.76), and Lemma 7.19 (recall |¥;_;, ||Lip < Cio.5 by (10.5) and take

T' > Cio.5 to apply Lemma 7.19), and then use st\itN Wty > Bév,tN Wty = Bivh to see
that for some constants ¢; > 0,

tVinN
12| < e / eer101 =) XN(PN (1= W,y ) ds + Crao1(T") (log N)"V2(XY (1) + XY (1)?)

tN

tVin
< / ecr101(t=9) XN (1 — PNy ds + Cr101(T7) (log N)"V2(XY (1) + XY (1)?)

tn

< epe ™ XY (1) P(sup | B e > (Ko — 1)L’ = 3) + Crao(T")(log N)~/*(X¢' (1) + X4 (1)%),

u<t

(10.14)

where (10.8) is used in the last line. So by (10.12)-(10.14), we have (10.10).
We turn now to the more involved proof of (10.11). Recall from Section 7.1, that 55\/ vm
denotes a rescaled voter model on Sy with rate function NwycV¥™(x, £). Let §N M denote

the corresponding killed voter model, which has rate function NwycVV"(z,&)1(z € I)
and initial condition f supported on I. We will assume (V™ has the same initial
condition and so by the monotonlclty of the voter model, just as in (10.1), we may assume

§N,vm S §N,vm. (1015)
We will also use the following killed duality equation which is a special case of (9.36) in
[12]:
For (I)V supported in I and finite disjoint A, B C Sy,
; ; Nb
Fy [ TL ¥ [T - on] = [ T] s JT0 - B3] 016
acA beB beB

In view of the above we assume for now that § 0 is supported on the larger set I.
Recalling (9.25), for « > 0 and j = 2,3 we define
. N,j .
H(EN 2,u) = Egn (a9 (2, 8MM)). (10.17)
D So 2u

By (10.16) and just as in the derivation of (7.20),
priVs2 a x Ttz
Y v = Y N WNAE(TTeY@Yey T - mhe)

0#AACNN yeEA zeNN\A
N3 N s ol N T N Ttz
o e = > NNA)E( [Tefay= I a-g@y+)
DAACNN yEA zENN\A
_ H (1- BN Ty H §é\7(§11:/,x+2)).
yeA 2ENN\A
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With the definitions (7.21) and (7.22) in mind we also introduce

~Nj, N E%) ~Nj, N .
E (éo ,u7\Ils) = W Z W(Sax)ﬂ (§0 ,.IZ,U), J = 273

TESN
As for (7.23), (10.16) implies for j = 2,3,

N.j

Eéév [dNﬁj (S’éi\f,vm7 \Il)] = E (gN U, \I/s)-

>0
The next result is a killed version of Lemma 7.3. We give the proof at the end of this
section.

Lemma 10.2. There is a constant C.1s such that for j = 2,3, allT' > 0, ® € C,([0,T"] x
R?) and all s € [ty,T"],

, .\ N,j _
‘Egév [N (s, €Y @) FX J-H (€Y, tn Puiy)| < Croas|[ @]z, v (log N)TH2XT, (1),
(10.18)

Let us assume again that & = Sév is supported on the smaller set I (as opposed to ),

and for j = 2,3 write ;1 = >, V;;, where

tn Vi
Vi = E[/ @ (s,€Y, w) ~ ON XN, ()]ds], (10.19)
tN
tNVt
Vig = @§VE[/ [Xo_e, (1) —L,m(qf)]ds], (10.20)
t
tNVItV R )
Vg = E[/ ONX, (V) - HNv](éi\ithN,\I/S_tN)]dS}, (10.21)
tN
vt PN (¢ N prVeI N
Vj,4=E{/ [H™ (&, v Wery) — (§S_tN,tN,\Ifs_tN)]ds}, (10.22)
tN
VE NG N Nj(. ¢N
Vis :E[/ EEY, i Way) — AV (s, € W)ds. (10.23)
tN

We bound these one at a time.
By (7.91) and (7.98),

(t—tn)™ 1
) N (¢N —1/2 N
Vial < 07.91||\1f||N/0 (tN og v 217 (€] + (log N) TP ELXG (1)])ds (10.24)

(t—tn)T
< Cron||¥x [07,98(T’)(1og N)~1/2 (ng(l) + Xév(l)Q) n (1ogN)—1/2/ E[XN(1)]ds
0
< Cho.25(T")(log N)~1/2 (Xév(l) + X5V(1)2), (10.25)
where we have used Proposition 7.6(a) and (10.5) in the last step. Recalling that §iv < §tN ,

letting K = sup (|0 |+ |©Y|) < oo and using ||¥|o < 1, we get

o=t T
V2] < K/ E[X,(1) — X (1)]ds. (10.26)
0
Change variables in V), 5 to rewrite it as an integral over [0, (¢t — ¢ty)*], set u = s and
replace £ with £ iv in Proposition 7.10 and Proposition 7.11 to obtain

1

o B + (o N) B (1)) s,

(t—tn)T
sl <oy [ (
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which is the same as the right-hand side of (10.24), but with éﬁv instead of §£V . Since
¢V <&l (10.25) gives
V5] < Cho.25(log N)~1/2 (Xév(l) + XéV(1)2). (10.27)

By (10.5), Lemma 10.2, XN(I) < X¥(1) and Proposition 7.6(a),

(t—tn)t )
Vsl < 010.18H\IIHI/ZN(IOgN)ilS/z/ EB[XN(1)]ds < Cro.05(T")(log N) 132X N (1).
0

(10.28)
Turning to V; 4, we use ¥, = 0 on (I)¢ and || ¥||., < 1 to obtain

loN . N,j
g STIANIEN 2 ty) — H (€N 2 ty)].

- . N,j
ANt w) — (€N b, )

zel
(10.29)

For x € Sy we may use (7.16), the coupling (10.15), and then duality (recall (10.16)) to
see that

N,j vm 1
[FY (€N, ty) = (€Y, t)| = [Bev a9 (2, €00) — 9 2, €107

<2l e | 3 (€@ +y) - €0 + )]
yeNN
=2||r(| > EEN (BT - N (BT (10.30)
yeNN

Now define

A(0)={zeSynI: inf |z—y| <6} and A(S) ={zeSynI: inf |z—y|>d}.
ye(l)e ye(l)e

We will decompose the sum in (10.29) into sums over z € A(tl/?’) and z € A(tl/g) . By
(10.30),

log N)3 " N.j
(OB NS S~ (e ) — BV )
zeA(LN®)

<o 8N S B[S B

zeA(tN®)  YENN

o BN S S ) Y B =)

TE ALY ) WESN yENN
log N . _
<o S S ) D AUB > IV Y €N w)]
wE A(2t3*) yENN weA(2ty?)
< Cio|V|(log N)* [ XN (VT + )ty + XN (Aey™))] (10:31)

for some constant Cig 51. In the last line we used X~ < X% and Chebychev’s inequality,
and in the next to last inequality we noted that for w ¢ A(2ty") and = € A(ty)'/3, we
must have |w — x| > tN/3. To bound E[ XN (A(2t1/3))} we will need a bound on the mean
measure similar to Lemma 7.19, but now in terms of the L' norm of ¥ : Sy — R,
W[l = ¥ X,es, ¥(x). The result we need is

B(XY (W) < X3 (P (9)) + Cr XY (1) (10g NY* [l (1 + 1og (1 v ﬁ)) Vs < T,
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This follows easily from (7 103) (with ¢ = 0) and (7.2) as in the proof of Lemma 8.6 of [9].
Use this with ¥ = 1{A( 2tN )} to take means in (10.31), recalling that X}’ is supported
on I to bound X}' (PN (V)), and obtain

S

3 plt—tn)"t ,
Qg [T S BN w1 (€ ) s < o)X (1)log )
T A(tN?)
(10.32)
See the derivation of (141) in [9] for the details.

Ifx € A(tl/?’) and y € Ny, then 5 (B NHy) € (EN *+Y) £ 0 implies that BN-#+v

exits I before ¢y, and hence moves a distance exceeding tl/ from z by time ¢ . Therefore
(10.30) implies

‘HNJ(S z,tN, ) — ﬂ J(f T, tN ‘ < 2|7l Z { BNw-i-y)l{ sup |Bi\7,x+y 2| > t1/3}}

yeENN ustn

With this bound, using Proposition 7.6(a), we have

3 pt—th AN FrVod
(logTJV)/ Z E[‘HN](SéVax?tN) _EN,j(§£v7x’tN)’i|ds
0

e At 3y

2||7‘||(]1\<;/gN / { Z Z Z 5 (BNy =w —x, sup |BNY| >t1/3)}ds

u<t
WESN ze A(ty®) vENN "

t
<2rlllog N)® 3" P(sup [BY] > ) / EXN (1)]ds
= u<ltn 0
yeNN
< 2|7 Crt XY () (og N)* Y P(sup [BY¥2 > 13°)

u<t
yeNN N

< Choss(T) XY (1)(log N)~10/3, (10.33)

where the weak L' inequality for nonnegative submartingales is used in the last. Use
the above and (10.32) in (10.29) to obtain

V)4l < Cro.34(T")(log N)~VOX N (1). (10.34)

The inequalities (10.25), (10.26), (10.27), (10.28) and (10.34) imply (10.11), and we are
done. O

Proof of Lemma 10.2. From Section 7.1 we may recall the bounding biased voter model
EN with rate function &V:® as in (7.6), constructed as in (6.2). We then construct the
killed version of ¢, denoted § using the same equation with rate function

MO(x,€) = M@, Oz € ).

We assume all these processes have the same initial state éév = ¢}V, supported on I,
as our previous processes. In Section 7.1 we verified condition (6.3) for the rates of
(6N, €N) and for the rates of (¢VV" ¢V). The same condition is then immediate for the
corresponding killed processes as one simply multiplies the required inequalities by
1(z € f). So we may now apply (6.4) for the killed processes to conclude that

and ¢Nvm < gV (10.35)

¢V <

\mw
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IfX, =3 Y.csn gv( )0z and ¢ = [|7[|(2 + p~!), then we may use the last display on p.
113 of [11] to conclude that
- N logN N N
BIXY (1) = X5 (BY (1) + e / S Py ~ @) Y N yds.
0 rESN yeENN
(10.36)

To see this, first note that the setting in [11] is for a general class of voter model
perturbations. This includes our biased voter model with (the notation is from [11])
Sy =0, and By ({y}) = co(log N)? for y € Ny, while By is zero otherwise. The above
formula then follows from p. 113 of [11]. Now take the difference of (10.36) with (10.4)
and use (7.39) to conclude (recall (10.35))

E[XtN(1)—X,{fV(1)]=E[/OtN( o{ TE (0B N)Z 5~ pN (1)1 - ¥ () 3 aty)

z€SN yeNN

3
— 3 dN (€N, 1)) ds] (10.37)

j=2

<o [ N0 MBI () X2 )]s

tN 5
< ol (log N)® [ e XY (1) + OXJ (1)) ds
0
< C(log )X (1), (10.38)

where Lemma 4.1 of [10]), and Proposition 7.6 (a) are used in the next to last line. The
same reasoning (in fact it is simpler as there are no drift terms) gives

E[X,, (1) - X""(1)] < C(log N)~' XV (1). (10.39)

Now argue exactly as in the proof of Lemma 7.2, using (10.38) and (10.39) in place
of Lemma 7.1, to obtain the following killed version of Lemma 7.2 (recall now p = 19
from the definition of ¢y ):
There is a C.49 S0 that for j = 2,3, all 7" > 0, s € [0,7"] and all ® € C,([0,7"] x R?),
Egx [N (s, & @) = dN (5,67, ®)[] < Cro.40]| o (log N) X5 (1). (10.40)

The proof of Lemma 10.2 is now completed using the Markov property just as in the
derivation of Lemma 7.3. O

Proof of Corollary 1.17. By Theorem 4.9 and Theorem 1.15 we have the percolation
condition (4.18). The required result now follows by a comparison to supercritical
oriented percolation and Theorem 1.15 itself, as in the proof of survival in Proposition 5.3
of [11]. In fact, the derivation is now a bit easier as the uniform bounds proved there are
not required. O

11 Appendix: The || = 8 case of Lemma 3.3
Recall that for |NV| =8,

Mk j) =Y (Z)(',f:f) 1<kj<8, (11.1)

odd i<jAk
/¢ q
ap = <8> ., 1<e<a. (11.2)
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Our goal is to verify that if « = aM ! then there exists a ¢y < 1 such that
ap(q) >0V gp<g<1l 1<¢<8.

The conclusion of Lemma 3.3 then follows as described in Section 3.1.
It is straightforward to check that M given by (11.1) is

rt 2 3 4 5 6 7 87
7T 12 15 16 15 12 7 O
21 30 31 28 25 26 35 56
M — 35 40 35 32 35 40 35 O
T I35 30 25 28 31 26 21 56
21 12 13 16 13 12 21 O
7T 2 5 4 3 6 1 8
tL1 0 1 0 1 0 1 0.]
Using maple, we obtain
[— _ 0 1 1 7
64 32 64 64 32 64 16
_ T 1 1 1 1 1 _7 _ 1
64 32 64 32 64 32 64 32
_ T 1 3 0 _3 _1 e e
64 32 64 64 32 64 16
5 3 5 35
M-l 9 s 0 s 0 m 0 -
7 1 3 0 3 1 7T |
64 32 64 64 32 64 16
i _1 1 1 1 _ 1 e _ T
64 32 64 32 64 32 64 32
3 _ 1 1 0 _1 1 _3 1
64 32 64 64 32 64 16
-+ 1r . r 1 1 1 1
L 128 128 128 128 128 128 128 128 4

and it is straightforward but tedious to check that this is indeed correct by verifying that

the product of the above matrices is the identity matrix.
Given M~! and a as above, a = aM ! is given by

o ST T T T
oo T G
oo o Sl G
-
oo o S
o @0 G

1\4 1\9 3\4 5\4 3\4 7\4q
oo S T T s o
oo 1wl oG

By pairing off terms it is easy to see that a;(q) > 1/128 > 0forall 0 < ¢ < 1. As
described in Section 3.1, to prove (11.3) it remains only to verify (3.12), so we consider
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ay(g),2 < ¢ < 8. By differentiating, plugging in ¢ = 1 and simplifying, we obtain

3 3 5 7
(1) = ——log2 — ——log3 + ——logh — —— log 7
ap(1) = 128 082~ 956 °8% T 356 °8° 956 08
3 15 7
T = S log2 4 5 log3 — D log5 4+ ' log7
(1) = gplog2+ 15 logd — £ logh + = log
5 3
(1) = ——log 2+ —>1
1) 128 082+ 155 log3
15 15 7
(1) = 471 9 2} =2 Jog5— ——1
o5(1) = gy log2 = wolog3 + o logh — £ log 7
3 9 5 7
(1) = ——log2 — —1 2 1
(1) = g log2 — 5o logd — o0 °g5‘+'256 g7
5 63 35
101 7
ag(l) = _ﬁl g2+§810g5+§810g7

We need only verify that each of the above are strictly negative. Resorting again to
maple, the above derivatives can be written in the form

a;(1)::-417 o8 <22235661)
256 200000
, 30517578125
a5(l) = —gplo < 5692329216 >
a(1) = _12810g< )
o (1) = log (11816941917501)
5 7812500000000
(1) = L 1og <61509375)
6 52706752
(1) = o <1625582413058972472208552062511444091796875>
512 1258458428839311554156984626190103821156352
(1) = o8 (2535301200456458802993406410752)
8 128 2306825584582984447479248046375

This completes the proof of (3.12) for the case |N | = 8, and so we are done.
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