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We show that local times of super-Brownian motion, or of Brownian
motion indexed by the Brownian tree, satisfy an explicit stochastic differential
equation. Our proofs rely on both excursion theory for the Brownian snake
and tools from the theory of superprocesses.

1. Introduction. The main purpose of the present work is to derive a stochastic differ-
ential equation for the local times of super-Brownian motion, or equivalently for the local
times of Brownian motion indexed by the Brownian tree. Consider a super-Brownian motion
whose initial value is a constant multiple of the Dirac measure at 0. Informally, the local time
La at level a ∈ R counts how many “particles” visit the point a. It was shown recently [19]
that, although the process (La)a≥0 is not Markov, the pair consisting of La and its derivative,
L̇a, is a Markov process (when a= 0 we need to consider the right derivative at 0). However,
the transition kernel of this Markov process is identified in [19] in a complicated manner. Our
goal here is to characterize this transition kernel in terms of a stochastic differential equation.
There is an obvious analogy between our main result and the classical Ray-Knight theorems
showing that the local times of a linear Brownian motion taken at certain particular stopping
times, and viewed as processes in the space variable, are squared Bessel processes which
satisfy simple stochastic differential equations. In the setting of the present paper, it is re-
markable that the relevant stochastic differential equation involves the derivative of the local
time.

Let us give a more precise description of our main result. On a given probability space, we
consider a super-Brownian motion X = (Xt)t≥0 with initial value X0 = αδ0, where α > 0
is a constant. The associated total occupation measure is defined by

Y :=

∫ ∞
0

Xt dt.

Since X becomes extinct a.s., the measure Y is finite. Sugitani [25] proved that the mea-
sure Y has a.s. a continuous density (La)a∈R, which is even continuously differentiable on
(−∞,0) ∪ (0,∞). We write L̇a for the derivative of this function at a ∈ R\{0}. Moreover,
the function a 7→ La has a right derivative L̇0+ and a left derivative L̇0− at 0, and, by conven-
tion, we set L̇0 = L̇0+. In order to state our result, let U = (Ut)t≥0 be a stable Lévy process
with index 3/2 and no negative jumps. The distribution of U is characterized by specifying
its Laplace exponent ψ(λ) =

√
2/3λ3/2 (see Section 2.5). For every t > 0, let (pt(x))x∈R be

the continuous density of Ut, which is determined by its Fourier transform∫
R
eiux pt(x) dx= exp(−c0t |u|3/2 (1 + i sgn(u))),

where c0 = 1/
√

3 and sgn(u) = 1{u>0} − 1{u<0}. Then x 7→ pt(x) = t−2/3p1(xt−2/3) is
strictly positive, infinitely differentiable and has bounded derivatives for each t (see Ch. 2 of
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[26] for these and other properties of stable densities). Write p′t(x) for the derivative of this
function.

THEOREM 1. For every y ∈R, set g(0, y) = 0 and, for every t > 0,

g(t, y) = 8t
p′t(y)

pt(y)
.

Then ∫ ∞
0
|g
(
Ly,

1

2
L̇y
)
|dy <∞, a.s.

and the pair (Lx, L̇x)x≥0 satisfies the two-dimensional stochastic differential equation

(1)
L̇x = L̇0 + 4

∫ x

0

√
Ly dBy +

∫ x

0
g
(
Ly,

1

2
L̇y
)

dy

Lx = L0 +

∫ x

0
L̇y dy,

where B is a linear Brownian motion. Moreover if R = inf{x≥ 0 : Lx = 0}, then (Lx, L̇x)
is the pathwise unique solution to (1) which satisfies (Lx, L̇x) = (Lx∧R, L̇x∧R) for all x≥ 0
a.s.

Remark. The fact that the local time satisfies the last property stated in Theorem 1 follows
from Theorem 1.7 in [23] where it is shown that if R is as above and G= sup{x≤ 0 : Lx =
0}, then

(2) −∞<G< 0<R<∞ and {x ∈R : Lx > 0}= (G,R) a.s.

Strictly speaking, in order to write equation (1), it may be necessary to enlarge the underlying
probability space. The point is that the Brownian motion B will be determined from the pair
(Lx, L̇x)x≥0 only up to the “time” R (for x > R we have Lx = L̇x = 0). So a more precise
statement would be the existence of an enlarged probability space (Ω,F ,P) equipped with
a filtration (Ft)t≥0 and an (Ft)-Brownian motion B such that (Lt, L̇t)t≥0 is adapted to the
filtration (Ft)t≥0 and (1) holds (see the proof in Section 6).

Interestingly, the functions pt and p′t have explicit expressions in terms of the classical Airy
function Ai and its derivative Ai′. In fact, x→ pt(−x) is called the Airy map distribution in
[9]. For every t > 0 and x ∈R, we have

pt(x) = 6−1/3 t−2/3A(6−1/3t−2/3x),

where

A(x) =−2e2x3/3
(
xAi(x2) + Ai′(x2)

)
.

See [9, Section IX.11], or [7] and the references therein, and note that our choice of pt differs
from that in [7] by a scaling constant. It follows that

g(t, x) = 8× 6−1/3 t1/3
A′

A
(6−1/3 t−2/3x),

with (the Airy equation Ai′′(x) = xAi(x) helps here)

(3)
A′

A
(x) = 4x2 +

Ai(x2)

xAi(x2) + Ai′(x2)
.
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One useful application of this representation and known asymptotics for Ai and Ai′ (see p.
448 of [2]) is that

(4)
p′1
p1

(y) = 6−1/3 A′

A
(6−1/3y) =− 5

2y
+O

( 1

y4

)
as y→+∞,

and so

(5) for all y0 ∈R, sup
y≥y0

∣∣∣p′1
p1

(y)
∣∣∣=C(y0)<∞.

We can reformulate our theorem in terms of the model called Brownian motion indexed
by the Brownian tree. Here the Brownian tree T is a “free” version of Aldous’ Continuum
Random Tree [3] and may be defined as the tree coded by a Brownian excursion under the
(σ-finite) Itô measure. Points of T are assigned “Brownian labels” (Vu)u∈T , in such a way
that the label of the root is 0 and labels evolve like linear Brownian motion along the line
segments of the tree. It is convenient to assume that both the tree T and the labels (Vu)u∈T
are defined on the canonical space of snake trajectories under the “excursion measure” N0

(see Section 2 below for a more precise presentation). If Vol denotes the volume measure on
the tree T , we are interested in the total occupation measure, which is the finite measure Y
on R defined by

(6) Y(f) =

∫
T
f(Vu) Vol(du),

for every nonnegative Borel function f on R. The measure Y has a continuously differen-
tiable density (`x)x∈R with respect to Lebesgue measure on R, and we write ( ˙̀x)x∈R for its
derivative. We can then state an analog of Theorem 1. There is a technical difficulty due to
the fact that N0 is an infinite measure, and for this reason we need to make an appropriate
conditioning.

THEOREM 2. Let δ > 0, and consider the probability measure N(δ)
0 := N0(· | `0 > δ).

Then, ∫ ∞
0
|g
(
`y,

1

2
˙̀y
)
|dy <∞, N(δ)

0 a.s.

and, under N(δ)
0 , the pair (`x, ˙̀x)x≥0 satisfies the two-dimensional stochastic differential

equation

˙̀x = ˙̀0 + 4

∫ x

0

√
`y dβy +

∫ x

0
g
(
`y,

1

2
˙̀y
)

dy

`x = `0 +

∫ x

0

˙̀y dy,

where β is a linear Brownian motion. Moreover if ρ = inf{x ≥ 0 : `x = 0}, then (`x, ˙̀x) is
the pathwise unique solution to the above equation which satisfies (`x, ˙̀x) = (`x∧ρ, ˙̀x∧ρ) for
all x≥ 0 a.s.

In the language of superprocesses, Theorem 2 corresponds to a version of Theorem 1
under the so-called canonical measure. In what follows, we will only deal with Theorem 1.
Theorem 2 then follows since it is shown in [19] that the process (`t, ˙̀t)t≥0 is Markov with
the same transition kernels as the process (Lt, L̇t)t≥0 considered in Theorem 1 (the pathwise
uniqueness in either equation will follow easily from a classical result for locally Lipschitz
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coefficients). Still the formulation of Theorem 2 is useful to understand our approach, as we
will rely on the Brownian snake representation of super-Brownian motion, which involves
considering a Poisson collection of Brownian trees equipped with Brownian labels. The same
remark as for Theorem 1 applies also to Theorem 2 (see Theorem 1.4 of [10] for the analogue
of (2)).

One motivation for deriving a stochastic differential equation for (Lx, L̇x) is to allow one
access to the tools of stochastic analysis for a more detailed analysis of these processes. To
this end, we use a transformation of the state space and a random time change to effectively
transform the solution to (1) into an explicit one-dimensional diffusion which can be studied
in detail, and from which one can reconstruct (Lx, L̇x) (see Propositions 18 and 19). The
diffusion will be a time change of L̇x/(Lx)2/3 and is the unique solution of (77) below.

Our proofs depend on both the excursion theory for the Brownian snake [1] and tools com-
ing from the theory of superprocesses [24, 10]. Excursion theory for the Brownian snake was
the key ingredient for getting the Markov property of the process (Lx, L̇x)x≥0 in [19]. The
transition kernel of this process was described in terms of the “positive excursion measures”
N∗,z0 , which roughly speaking give the distribution of the labeled tree (T , (Vu)u∈T ) condi-
tioned to have only nonnegative labels, with a parameter z > 0 that in some sense prescribes
how many points u of T have the label zero. Local times still make sense under the measures
N∗,z0 and, for every h > 0, one can compute the expected value of the derivative of local time
at level h in the form

N∗,z0 ( ˙̀h) = z γ
( 3h

2z2

)
,

where the function γ has an explicit expression in terms of the (complementary) error func-
tion erfc (Proposition 13). For every a≥ 0 and t > 0, y ∈ R, excursion theory then leads to
the formula

E
[
L̇a+h

∣∣∣La = t,
1

2
L̇a = y

]
= E

[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
,

where (Zj)j≥1 are the jumps of the bridge from 0 to y in time t associated with the Lévy
process U (Proposition 14) and listed in decreasing order. The precise justification of the for-
mulas of the last two displays requires certain bounds on moments of the derivatives of local
time (Lemmas 10 and 12). We obtain these bounds via a stochastic integral representation of
the derivative L̇x in terms of the martingale measure associated with X, which is due to Hong
[10]. Here the use of these techniques from the theory of superprocesses is crucial since the
excursion measures N∗,z0 do not seem to provide a tractable setting for a direct derivation of
the required bounds.

It turns out that one can explicitly compute the right-hand side of the last display in terms
of an integral involving the density pt (Proposition 15) and it is then an easy matter to obtain

lim
h→0

1

h
E
[
L̇a+h − L̇a

∣∣∣La = t,
1

2
L̇a = y

]
= 8 t

p′t(y)

pt(y)
= g(t, y).

From this, one can infer that, for every ε > 0, the process

M ε
x := L̇x∧Sε − L̇0 −

∫ x∧Sε

0
g(Ly,

1

2
L̇y) dy

is a local martingale, where we have written Sε := inf{x ≥ 0 : Lx ≤ ε}. At that point, we
again use the stochastic integral representation of Hong [10], from which we can deduce
that the quadratic variation of M ε

x is 16
∫ x∧Sε

0 Ly dy. Although there are some additional
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technicalites to handle, often due to the unboundedness of g(Ly, L̇y/2), we then can use
standard tools of stochastic calculus to derive the stochastic differential equation (1).

We note that the recent paper of Chapuy and Marckert [6] addresses similar questions for
the model called ISE (integrated super-Brownian excursion). This model, which was intro-
duced by Aldous [4], corresponds to conditioning the Brownian tree T to have total volume
equal to 1. Under this conditioning, local times are still well defined and continuously dif-
ferentiable. On the basis of discrete approximations, [6] conjectures a stochastic differential
equation for local times of ISE, which is similar to (1) but with a more complicated drift term
involving also the integrals

∫ x
−∞L

y dy — the reason why these integrals appear is of course
the special conditioning which forces

∫∞
−∞L

y dy = 1. It is likely that Theorem 2 can be used
to also derive a stochastic differential equation for local times of ISE, but we do not pursue
this matter here.

The paper is organized as follows. Section 2 gathers a number of preliminaries. In par-
ticular, we introduce the positive excursion measures N∗,z0 , and we recall the main result of
the excursion theory of [1]. In Section 3, we briefly recall the Brownian snake construction
of the super-Brownian motion X, and we state a key result from [19] giving the conditional
distribution of the collection of “excursions” of X above a level a≥ 0 knowing (Lx, L̇x)x≤a
(Proposition 9). This conditional distribution knowing La = t and L̇a = y is given in terms
of the measures N∗,z0 and the collection of jumps of the Lévy bridge from 0 to y in time t.
In Section 4, we rely on Hong’s representation to derive our estimates on moments of the
increments of L̇x, and then to evaluate the quadratic variation of this process. Section 5 is de-
voted to the calculation of the conditonal expected value of L̇a+h − L̇a knowing La = t and
L̇a = y. Finally, Section 6 gives the proof of Theorem 1 and also establishes the connection
between (Lx, L̇x) and the simple diffusion in (77).

2. Preliminaries.

2.1. Snake trajectories. The proof of our main result relies in part on the Brownian snake
representation of super-Brownian motion. We start by recalling the formalism of snake tra-
jectories, referring to [1] for more details. A (one-dimensional) finite path w is a continuous
mapping w : [0, ζ]−→ R, where ζ = ζ(w) ∈ [0,∞) is called the lifetime of w. The spaceW
of all finite paths is a Polish space when equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t∧ ζ(w))−w′(t∧ ζ(w′))|.

The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For every x ∈R, we setWx =
{w ∈W : w(0) = x}. The trivial element ofWx with zero lifetime is identified with the point
x of R.

DEFINITION 3. Let x ∈ R. A snake trajectory with initial point x is a continuous map-
ping s 7→ ωs from R+ intoWx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s≥ 0 : ωs 6= x}, called the duration of the
snake trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s≥ 0).

(ii) (Snake property) For every 0≤ s≤ s′, ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)].

We will write Sx for the set of all snake trajectories with initial point x, and S for the
union of the sets Sx for all x ∈R. If ω ∈ S , we often write Ws(ω) = ωs and ζs(ω) = ζ(ωs) for
every s≥ 0, and we omit ω in the notation. The sets S and Sx are equipped with the distance

dS(ω,ω′) = |σ(ω)− σ(ω′)|+ sup
s≥0

dW(Ws(ω),Ws(ω
′)).
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For ω ∈ Sx and a ∈R, we will use the obvious notation ω+a ∈ Sx+a for the translated snake
trajectory. It is easy to verify [1, Proposition 8] that a snake trajectory ω is determined by the
two functions s 7→ ζs(ω) and s 7→ Ŵs(ω) (the latter is sometimes called the tip function).

Let ω ∈ S be a snake trajectory and σ = σ(ω). We define a pseudo-distance on [0, σ]2 by
setting

dζ(s, s
′) = ζs + ζs′ − 2 min

s∧s′≤r≤s∨s′
ζr.

We then consider the associated equivalence relation s ∼ s′ if and only if dζ(s, s′) = 0 (or
equivalently ζs = ζs′ = mins∧s′≤r≤s∨s′ ζr), and the quotient space T (ω) := [0, σ]/∼ , which
is equipped with the distance induced by dζ . The metric space (T (ω), dζ) is a compact R-tree
called the genealogical tree of the snake trajectory ω (we refer to [16] for more information
about the coding of R-trees by continuous functions). Let p(ω) : [0, σ] −→ T (ω) stand for
the canonical projection. By convention, the tree T = T (ω) is rooted at the point ρ(ω) :=
p(ω)(0) = p(ω)(σ), and the volume measure Vol(·) on T is defined as the pushforward of
Lebesgue measure on [0, σ] under p(ω). As usual, for u, v ∈ T , we say that u is an ancestor
of v, or v is a descendant of u, if u belongs to the line segment from ρ(ω) to v in T .

The snake property shows that the condition p(ω)(s) = p(ω)(s
′) implies that Ws(ω) =

Ws′(ω). So the mapping s 7→Ws(ω) can be viewed as defined on the quotient space T . For
u ∈ T , we set Vu := Ŵs(ω), for any s ∈ [0, σ] such that u = p(ω)(s). We interpret Vu as a
“label” assigned to the “vertex” u of T , and each path Ws records the labels along the line
segment from ρ(ω) to p(ω)(s) in T .

We will use the notation

W ∗ := max{Ws(t) : s≥ 0, t ∈ [0, ζs]}= max{Ŵs : 0≤ s≤ σ}= max{Vu : u ∈ T },

W∗ := min{Ws(t) : s≥ 0, t ∈ [0, ζs]}= min{Ŵs : 0≤ s≤ σ}= min{Vu : u ∈ T },

and we also let Y = Y(ω) be the occupation measure of ω, which is the finite measure on R
defined by setting

(7) Y(f) =

∫ σ

0
f(Ŵs) ds=

∫
T
f(Vu) Vol(du),

for any Borel function f : R−→R+. Trivially, Y is supported on [W∗,W
∗].

We next introduce the truncation of snake trajectories. For any w ∈Wx and y ∈R, we set

τy(w) := inf{t ∈ (0, ζ(w)] : w(t) = y} ,

with the usual convention inf ∅ =∞. Then if ω ∈ Sx and y ∈R, we set, for every s≥ 0,

νs(ω) := inf
{
t≥ 0 :

∫ t

0
du1{ζ(ωu)≤τy(ωu)} > s

}
(note that the condition ζ(ωu) ≤ τy(ωu) holds if and only if τy(ωu) =∞ or τy(ωu) = ζ(ωu)).
Then, setting ω′s = ωνs(ω) for every s≥ 0 defines an element ω′ of Sx, which will be denoted
by try(ω) and called the truncation of ω at y (see [1, Proposition 10]). The effect of the time
change νs(ω) is to “eliminate” those paths ωs that hit y and then survive for a positive amount
of time. The genealogical tree of try(ω) is canonically and isometrically identified with the
closed subset of T (ω) consisting of all u such that Vv(ω) 6= y for every strict ancestor v of u
(different from ρ(ω) when y = x).

Finally, for ω ∈ Sx and y ∈R\{x}, we define the excursions of ω away from y. In contrast
with the truncation try(ω), these excursions now account for the paths ωs that hit y and
survive for a positive amount of time. More precisely, let (αj , βj), j ∈ J , be the connected
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components of the open set {s ∈ [0, σ] : τy(ωs)< ζ(ωs)} (note that the indexing set J may be
empty). We notice that ωαj = ωβj for every j ∈ J , by the snake property, and ω̂αj = y. For
every j ∈ J , we define a snake trajectory ωj ∈ Sy by setting

ωjs(t) := ω(αj+s)∧βj (ζ(ωαj ) + t) , for 0≤ t≤ ζ(ωjs)
:= ζ(ω(αj+s)∧βj ) − ζ(ωαj ) and s≥ 0.

We say that ωj , j ∈ J , are the excursions of ω away from y.

2.2. The Brownian snake excursion measure. Let x ∈R. The Brownian snake excursion
measure Nx is the σ-finite measure on Sx that is characterized by the following two proper-
ties: Under Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive excursions
of linear Brownian motion, normalized so that, for every ε > 0,

Nx
(

sup
s≥0

ζs > ε
)

=
1

2ε
;

(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean x
and covariance function

K(s, s′) = min
s∧s′≤r≤s∨s′

ζr.

Conditionally on the lifetime process (ζs)s≥0, each path Wr is a linear Brownian path started
from x with lifetime ζr . When r varies, the evolution of the path Wr is described informally
as follows. When ζr decreases, the path Wr is “erased” from its tip, and when ζr increases,
the path Wr is “extended” by adding little pieces of Brownian motion at its tip. The measure
Nx can be interpreted as the excursion measure away from x for the Markov process inWx

called the (one-dimensional) Brownian snake. We refer to [15] for a detailed study of the
Brownian snake with a more general underlying spatial motion.

For every r > 0, we have

Nx(W ∗ > x+ r) = Nx(W∗ < x− r) =
3

2r2

(see e.g. [15, Section VI.1]). In particular, Nx(y ∈ [W∗,W
∗])<∞ if y 6= x.

The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define
θλ(ω) ∈ Sx√λ by θλ(ω) = ω′, with

(8) ω′s(t) :=
√
λωs/λ2(t/λ) , for s≥ 0 and 0≤ t≤ ζ ′s := λζs/λ2 .

Then θλ(Nx) = λNx√λ.
Let us introduce the local times, (`y)y∈R, under Nx. The next proposition follows from

[6] (a slightly weaker statement had been obtained in [5]), and is also closely related to the
results of [25] concerning super-Brownian motion.

PROPOSITION 4. Let x ∈R. Then, Nx(dω) a.e. the occupation measure Y(ω) has a con-
tinuously differentiable density with respect to Lebesgue measure. This density is denoted by
(`y(ω))y∈R and its derivative is denoted by ( ˙̀y(ω))y∈R

We now introduce exit measures. We argue under Nx, and fix y ∈R\{x}. One shows that
the limit

(9) Zy := lim
ε→0

1

ε

∫ σ

0
ds1{τy(Ws)≤ζs≤τy(Ws)+ε}
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exists Nx a.e., and Zy is called the exit measure from (y,∞) (if x > y) or from (−∞, y)
(if y > x). Roughly speaking, Zy counts how many paths Ws hit y and are stopped at that
moment. The definition of Zy is a particular case of the theory of exit measures, see [15,
Chapter V]. We have Zy > 0 if and only if y ∈ [W∗,W

∗], Nx a.e. (recall y is fixed).
Let us recall the special Markov property of the Brownian snake under N0 (see, for exam-

ple, the appendix of [17]).

PROPOSITION 5 (Special Markov property). Let x ∈R and y ∈R\{x}. Under the mea-
sure Nx(dω), let ωj , j ∈ J , be the excursions of ω away from y and consider the point
measure

Ny =
∑
j∈J

δωj .

Then, under the probability measure Nx(dω |y ∈ [W∗,W
∗]) and conditionally on Zy , the

point measure Ny is Poisson with intensity ZyNy(·) and is independent of try(ω).

We now introduce a process called the exit measure process at a point, which will play
an important role in the excursion theory discussed below. Let x ∈ R and argue under the
excursion measure Nx. Also fix another point y ∈R (which may be equal to x). Since, condi-
tionally on ζs,Ws is just a Brownian path with lifetime ζs, we can make sense of its local time
at level y, which we denote by Ly(Ws) = (Lyt (Ws))0≤t≤ζs , and the mapping s 7→ Ly(Ws),
with values in (W, dW), is continuous (note that (Ws,Ly(Ws)) can be viewed as the Brow-
nian snake whose spatial motion is the pair formed by Brownian motion and its local time at
y). Then, for every r ≥ 0 and s ∈ [0, σ], set

ηyr (Ws) = inf{t ∈ [0, ζs] : Lyt (Ws)≥ r},

with the usual convention inf ∅ =∞. From the general theory of exit measures [15, Chapter
V], we get, for every r > 0, the existence of the almost sure limit

X yr = lim
ε→0

1

ε

∫ σ

0
ds1{ηyr (Ws)≤ζs≤ηyr (Ws)+ε}.

Roughly speaking, X yr measures the “quantity” of paths Ws that end at y after having accu-
mulated a local time at y exactly equal to r. See the discussion in the introduction of [1] for
more details.

Suppose that y 6= x. In that case, we also take X y0 =Zy (compare the last display with (9)).
Then under the probability measure Nx(· | y ∈ [W∗,W

∗]) = Nx(· | Zy > 0), conditionally on
Zy , the process (X yr )r≥0 is a continuous-state branching process with branching mechanism
ϕ(u) =

√
8/3u3/2 (in short, a ϕ-CSBP) started at Zy . In particular, (X yr )r≥0 has a càdlàg

modification, which we consider from now on. We refer to [15, Chapter II] for basic facts
about continuous-state branching processes, and to [1] for the preceding facts.

In the case y = x, we take X x0 = 0 by convention, and the process (X xr )r≥0 is dis-
tributed under Nx according to the excursion measure of the ϕ-CSBP. This means that, if
N =

∑
k∈K δωk is a Poisson point measure with intensity αNx, the process X defined by

X0 = α and, for every r > 0,

Xr :=
∑
k∈K
X xr (ωk),

is a ϕ-CSBP started at α (see [20, Section 2.4]).
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In all cases, we call (X yr )r≥0 the exit measure process at y. Local times are related to this
process by the formula

(10) `y =

∫ ∞
0

drX yr ,

which holds Nx a.e., for every y ∈ R. See [20, Proposition 26] when y 6= x, and [21, Propo-
sition 3.1] when y = x.

2.3. The positive excursion measure. We now introduce another important measure on
S0. There exists a σ-finite measure N∗0 on S0, which is supported on the set S+

0 of nonnegative
snake trajectories, such that, for every bounded continuous function G on S+

0 that vanishes
on {ω ∈ S+

0 :W ∗(ω)≤ δ} for some δ > 0, we have

N∗0(G) = lim
ε→0

1

ε
Nε(G(tr0(ω))).

See [1, Theorem 23]. Under N∗0(dω), each path ωs, for 0 < s < σ, starts from 0, then stays
positive during some time interval (0, u), and is stopped immediately when it returns to 0, if
it does return to 0.

Similarly to the definition of exit measures, one can make sense of the “quantity” of paths
ωs that return to 0 under N∗0. To this end, one proves that the limit

(11) Z∗0 := lim
ε→0

1

ε2

∫ σ

0
ds1{Ŵs<ε}

exists N∗0 a.e. See [18, Section 10]. Notice that replacing the limit by a liminf in (11) allows
us to make sense of Z∗0 (ω) for every ω ∈ S+

0 .
We can then define conditional versions of the measure N∗0, which play a fundamental role

in the present work. Recall the definition of the scaling operators θλ in (8). According to [1,
Proposition 33], there exists a unique collection (N∗,z0 )z>0 of probability measures on S+

0
such that:

(i) N∗0 =

√
3

2π

∫ ∞
0

dz z−5/2 N∗,z0 .

(ii) For every z > 0, N∗,z0 is supported on {Z∗0 = z}.

(iii) For every z, z′ > 0, N∗,z
′

0 = θz′/z(N
∗,z
0 ).

Informally, N∗,z0 = N∗0(· | Z∗0 = z). Note that the “law” ofZ∗0 under N∗0 is the σ-finite measure

(12) n(dz) = 1{z>0}

√
3

2π
z−5/2 dz.

It will be convenient to write Ň∗,z0 for the pushforward of N∗,z0 under the mapping ω→−ω.
Furthermore, for every a ∈R, we write N∗,za , resp. Ň∗,za for the pushforward of N∗,z0 , resp. of
Ň∗,z0 , under the shift ω 7→ ω+ a.

We state a useful technical lemma.

LEMMA 6. For every z > 0 and ε > 0, N∗,z0 (W ∗ < ε) > 0. Moreover, there exists a
constant C such that, for every z > 0 and x > 0,

N∗,z0 (W ∗ > x)≤C z3

x6
.
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We omit the proof of the first assertion. For the second one, see [20, Corollary 5].

Recall the notation Y(ω) for the occupation measure of ω ∈ S from (7).

LEMMA 7. Let z > 0. Then, N∗,z0 (dω) a.s. the measure Y(ω) has a continuous density
with respect to Lebesgue measure on R. This density vanishes on (−∞,0] and is continuously
differentiable on (0,∞).

PROOF. Via scaling arguments, it is enough to prove this with N∗,z0 replaced by N∗0. Then,
we can use the re-rooting property of N∗0 (see [1, Theorem 28] or [19, Theorem 5]) to obtain
that it suffices to prove the following claim: For every b > 0, Nb(dω) a.e., the occupation
measure Y(tr0(ω)) has a continuous density, which vanishes on (−∞,0] and is continuously
differentiable on (0,∞). Note that, Nb(dω) a.e., Y(tr0(ω)) is supported on [0,∞) and thus,
once we know that Y(tr0(ω)) has a continuous density it is obvious that this density vanishes
on (−∞,0].

Let us fix b > 0 and argue under Nb. Writing (ωj)j∈J for the excursions of ω away from
0, one easily verifies that, Nb(dω) a.e.,

(13) Y(ω) = Y(tr0(ω)) +
∑
j∈J
Y(ωj).

We know that Nb(dω) a.e., the measure Y(ω) has a continuously differentiable density
(`x(ω))x∈R and the same holds for the measures Y(ωj) since we know that (conditionally
on Z0(ω)) the snake trajectories ωj , j ∈ J are the atoms of a Poisson point measure with
intensity Z0N0. Note that, for every fixed x 6= 0, there are only finitely many indices j such
that `x(ωj)> 0. It then follows that the measure

∑
j∈J Y(ωj) has a density, and this density is

given for x 6= 0 by the function
∑

j∈J `
x(ωj), which is continuously differentiable on R\{0}.

However, Nb(dω) a.e., the function

x 7→
∑
j∈J

`x(ωj)

is continuous on R: we already know that it is continuous on R\{0}, and for the continuity at
0 we refer to formula (3.9) and the subsequent discussion in [21]. From (13), we now deduce
that Y(tr0(ω)) has a continuous density on R, which is given by

x 7→ `x(ω)−
∑
j∈J

`x(ωj).

This completes the proof.

In what follows, we will use the same notation (`x(ω))x∈R to denote the density of Y(ω)

under N∗,z0 (dω) or under N∗,za (dω) for any a ∈R.

2.4. Excursion theory. Let us now recall the main theorem of the excursion theory de-
veloped in [1]. We fix x ∈R and y ∈ [x,∞), and we argue under Nx(dω). As in the classical
setting of excursion theory for linear Brownian motion, our goal is to describe the evolution
of the labels Vu on the connected components of {u ∈ T (ω) : Vu(ω) 6= y}. So, let C be such
a connected component and write C for the closure of C. We leave aside the case where C
contains the root ρ(ω) of T (ω) (this case does not occur if y = x). Then, there is a unique
point u of C at minimal distance from ρ(ω), such that all points of C are descendants of u, and
we have Vu = y. Following [1], we say that u is an excursion debut (from y). We can then
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define a snake trajectory ω(u) that accounts for the connected component C and the labels on
C. To this end, we first observe that the set of all descendants of u in T (ω) can be written as
p(ω)([s0, s

′
0]) , where s0 and s′0 are such that p(ω)(s0) = p(ω)(s

′
0) = u. Then, we first define a

snake trajectory ω̃(u) ∈ Sy coding the subtree p(ω)([s0, s
′
0]) (and its labels) by setting

ω̃(u)
s (t) := ω(s0+s)∧s′0(ζs0 + t) for 0≤ t≤ ζ(s0+s)∧s′0 − ζs0 .

The set C is the subset of p(ω)([s0, s
′
0]) consisting of all v such that labels stay greater than y

along the line segment from u to v, except at u and possibly at v. This leads us to define

ω(u) := try(ω̃
(u)).

Then one can check (see [1] for more details) that the compact R-tree C is identified iso-
metrically to the tree T (ω(u)), and moreover this identification preserves labels. Also, the
restriction of the volume measure of T (ω) to C corresponds to the volume measure of T(ω(u))

via the latter identification.
We say that ω(u) is an excursion above y if the values of Vv for v ∈ C are greater than y

and that ω(u) is an excursion below y if the values of Vv for v ∈ C are smaller than y. Note
that an excursion away from y, as considered in Proposition 5, will contain infinitely many
excursions above or below y. Let Y(y,∞)

(ω) denote the restriction of Y(ω) to (y,∞). Then, the
preceding identification of volume measures entails that

(14) Y(y,∞)
(ω) =

∑
u∈D+

y

Y(ω(u)),

where D+
y is the set of all debuts of excursions above y.

Recall that the exit measure process (X yr )r≥0 was defined in Section 2.2. By Proposition
3 of [1] (and an application of the special Markov property when y 6= x), excursion debuts
from y are in one-to-one correspondence with the jump times of the process (X yr )r≥0, or
equivalently with the jumps of this process, in such a way that, if u is an excursion debut and
s ∈ [0, σ] is such that p(ω)(s) = u, the associated jump time of the exit measure process at y
is the total local time at y accumulated by the path Ws. We can rank the jumps of (X yr )r≥0 in
a sequence (δi)i∈N in decreasing order. For every i ∈ N, we write ui for the excursion debut
associated with the jump δi. The following theorem is essentially Theorem 4 in [1]. We write
N(y)
x = Nx(· | Zy > 0) when y 6= x, and N(x)

x = Nx.

THEOREM 8. Under N(y)
x , conditionally on (X yr )r≥0, the excursions ω(ui), i ∈ N, are

independent, and independent of try(ω), and, for every i ∈N, the conditional distribution of
ω(ui) is

1

2

(
N∗,δiy + Ň∗,δiy

)
.

We say that δi is the boundary size of the excursion ω(ui).
The case y = x of Theorem 8 is Theorem 4 of [1] and the case y 6= x can then be derived

by an application of the special Markov property (Proposition 5).

2.5. The Lévy bridge. Recall from the Introduction and Section 2.2 that for λ ≥ 0,
ψ(λ) = 1

2ϕ(λ) =
√

2/3λ3/2, and that (Ut)t≥0 denotes a stable Lévy process with index 3/2,
without negative jumps, and scaled so that its Laplace exponent is ψ(λ). This means that for
every t≥ 0 and λ > 0, we have

E[exp(−λUt)] = exp(tψ(λ)).
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The Lévy measure of U is 1
2n(dz), where n(dz) was defined in (12), and Us has character-

istic function

E[eiuUs ] = e−sΨ(u),

where

(15) Ψ(u) = c0|u|3/2 (1 + i sgn(u)),

and c0 = 1/
√

3. Recall also that Us has a density, ps(x), which by Fourier inversion is given
by

ps(x) =
1

2π

∫
e−iux−sΨ(u)du.

Several properties of ps(x) were recalled in the Introduction. Another property we use is that
the distribution of Us is known to be unimodal, in the sense that there exists a ∈R such that
both functions x 7→ ps(a−x) and x 7→ ps(a+x) are nonincreasing on R+ (cf. [26, Theorem
2.7.5]).

For every t > 0 and y ∈ R, we can make sense of the process (Us)0≤s≤t conditioned on
{Ut = y}, which is called the ψ-Lévy bridge from 0 to y in time t (see [8] for a construction
in a much more general setting). Write (Ubr,t,y)0≤s≤t for a ψ-Lévy bridge from 0 to y in time
t. Then, for every r ∈ (0, t) and every nonnegative measurable function F on the Skorokhod
space D([0, r],R), we have

(16) E
[
F
(

(Ubr,t,y)0≤s≤r

)]
= E

[
pt−r(y−Ur)

pt(y)
F
(

(Us)0≤s≤r

)]
.

See [8, Proposition 1]. In particular, the law of (Ubr,t,y
s )0≤s≤r has a bounded density with

respect to the law of (Us)0≤s≤r . Via a simple time-reversal argument, the same holds for the
law of (y−Ubr,t,y

(t−s)−)0≤s≤r .
In what follows, when we write

E
[
F
(

(Us)0≤s≤t

)∣∣∣Ut = y
]
,

this should always be understood as E[F ((Ubr,t,y)0≤s≤t)] (which makes sense for every
choice of y ∈R).

3. The connection with super-Brownian motion. Let us briefly recall the connection
between the Brownian snake excursion measures Nx and super-Brownian motion, referring
to [15] for more details. We fix α> 0, and consider a Poisson point measure on S ,

N =
∑
k∈K

δωk

with intensity αN0. Then one can construct a one-dimensional super-Brownian motion
(Xt)t≥0 with branching mechanism Φ(u) = 2u2 and initial value X0 = αδ0, such that, for
any nonnegative measurable function f on R,

(17)
∫ ∞

0
Xt(f) dt=

∑
k∈K
Y(ωk)(f)

where Y(ωk) is defined in formula (7). In a more precise way, the process (Xt)t≥0 is defined
by setting, for every t > 0 and every nonnegative Borel function f on R,

Xt(f) :=
∑
k∈K

∫ σ(ωk)

0
f(Ŵr(ωk)) drl

t
r(ωk),
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where ltr(ωk) denotes the local time of the process s 7→ ζs(ωk) at level t and at time r, and the
notation drl

t
r(ωk) refers to integration with respect to the nondecreasing function r 7→ ltr(ωk)

(see Chapter 4 of [15]).
The preceding representation of X allows us to consider excursions above and below a,

for any a ∈ R. Consider for simplicity the case a = 0. We define the exit measure process
(X0

t )t≥0 at 0 by setting X0
0 = α and, for t > 0,

(18) X0
t =

∑
k∈K
X 0
t (ωk).

As was already mentioned in Section 2.2, the process (X0
t )t≥0 is a ϕ-CSBP started at α.

Write (δi)i∈N for the sequence of its jumps ordered in decreasing size. Then the collection of
all excursions of ωk above and below 0, combined for all k ∈K , is in one-to-one correspon-
dence with the collection (δi)i∈N. Moreover, if ωi denotes the excursion associated with the
jump δi, then:

The excursions ωi, i ∈N, are independent conditionally on (X0
t )t≥0,(19)

and the conditional distribution of ωi is
1

2

(
N∗,δiy + Ň∗,δiy

)
.

All these facts are immediate consequences of Theorem 8 and the discussion preceding it.
We are primarily interested in the total occupation measure

Y :=

∫ ∞
0

Xt dt.

Recall from the Introduction, the notation Lx, L̇x for its continuous density, and its continu-
ous derivative on {x 6= 0}, and L̇0+, L̇0− for the right and left derivatives at 0, respectively,
and L̇0 := L̇0+. It also follows from Sugitani [25, Theorem 4] and its proof that

L̇0+ = lim
x→0,x>0

L̇x , L̇0− = lim
x→0,x<0

L̇x ,

and

(20) L̇0+ − L̇0− =−2α.

Fix a ≥ 0, and write Y(a,∞) for the restriction of Y to (a,∞), and similarly Y(a,∞)
(ωk) for

the restriction of Y(ωk) to (a,∞). In what follows, we assume that {k ∈K :W ∗(ωk)> a} is
not empty. In view of our applications, we are interested in excursions of ωk above level a,
combined for all k ∈K , such that W ∗(ωk)> a. We can order these excursions in a sequence
(ωa,+j )j∈N in decreasing order of their boundary sizes (Theorem 8 implies that these boundary
sizes are distinct a.s.). From (14) and (17), we have

Y(a,∞) =
∑
k∈K
Y(a,∞)

(ωk) =
∑
j∈N
Y(ωa,+j ).

Consequently, for every h > 0, we have

(21) La+h =

∞∑
j=1

`a+h(ωa,+j ) , L̇a+h =

∞∑
j=1

˙̀a+h(ωa,+j ) .

Note that there are only finitely many nonzero terms in the sums of the last display.
The next proposition will be a key ingredient of our approach. We can write the supremum

of the support of Y as R = sup{W ∗(ωk) : k ∈K}. By (2), we have {La > 0} = {R > a}
a.s., for any a≥ 0.
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PROPOSITION 9. Let a ≥ 0, let F be a nonnegative measurable function on the space
C((−∞, a],R+ ×R), and let G be a nonnegative measurable function on (Sa)N. Then,

E
[
1{R>a}F

(
(Lx, L̇x)x∈(−∞,a]

)
G
(

(ωa,+j )j∈N

)]
= E

[
F
(

(Lx, L̇x)x∈(−∞,a]

)
ΦG(La,

1

2
L̇a)
]

where ΦG(0, y) = 0 for every y ∈ R, and, for every t > 0 and y ∈ R, ΦG(t, y) is defined as
follows. Let Ubr,t,y be a ψ-Lévy bridge from 0 to y in time t, and let (Zj)j∈N be the collection
of jumps of Ubr,t,y ordered in nonincreasing size. Then,

ΦG(t, y) = E
[
G
(

($j)j∈N

)]
,

where, conditionally on (Zj)j∈N, the random snake trajectories ($j)j∈N are independent,
and, for every j, $j is distributed according to N∗,Zja .

See [19, Section 6] for a proof of this proposition (cf. formula (38) in [19]). Proposition
9 is basically a consequence of Theorem 8, but one needs to understand the conditional
distribution of the boundary sizes of excursions above level a given the collection of boundary
sizes of excursions below a, see in particular formula (24) in [19].

Thanks to formula (21), Proposition 9 immediately gives the (time-homogeneous) Markov
property of the process (Lx, L̇x)x≥0. Moreover, this proposition shows that, for every t > 0

and y ∈ R, the conditional distribution of (ωa,+j )j∈N knowing La = t and 1
2 L̇

a = y is the
law of the sequence ($j)j∈N, as described in the statement. We emphasize that this condi-
tional distribution makes sense for every choice of t > 0 and y ∈R. Later, when we consider
expressions of the form

(22) E
[
G
(

(ωa,+j )j∈N

)∣∣∣La = t,
1

2
L̇a = y

]
,

this will always mean that we integrate G with respect to the conditional distribution de-
scribed above.

4. Moment Bounds and Quadratic Variation. In this section, we use a representation
due to Hong [10] to derive certain estimates for moments of the derivatives L̇x introduced in
the previous section. We consider the super-Brownian motion X with X0 = αδ0, constructed
as above, and writeM for the associated martingale measure (see [24, Section II.5]. For every
function φ : R−→R of class C2,

Mt(φ) := Xt(φ)−X0(φ)−
∫ t

0
Xs(φ

′′/2) ds

is a (continuous) local martingale (with respect to the canonical filtration of X) with quadratic
variation

(23) 〈M(φ),M(φ)〉t = 4

∫ t

0
Xs(φ

2) ds.

There is a linear extension of the definition of the local martingale Mt(φ) to locally bounded
Borel functions φ and (23) remains valid (e.g., see Proposition II.5.4 and Corollary III.1.7 of
[24]).

Let ξ := inf{t≥ 0 : Xt = 0} stand for the (a.s. finite) extinction time of X and let x > 0.
According to [10, Proposition 2.2], we have a.s. for every t≥ ξ,

(24) L̇x =−α−Mt(sgn(x− ·)),
where sgn(x − ·) stands for the function y 7→ 1{x>y} − 1{x<y}. With our convention for
L̇0, this formula remains valid for x= 0. We use this representation to derive the following
lemma.
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LEMMA 10. (i) For every q ∈ [1,4/3), for every x, y ∈R,

E[|L̇x − L̇y|q]<∞.
(ii) Let q ∈ [1,4/3). There exists a constant β > 0 such that, for every 0< u< v,

(25) E
[

sup
x,y∈[u,v],x 6=y

( |L̇x − L̇y|
|x− y|β

)q]
<∞.

PROOF. (i) We first verify that, for every x > 0 and every q ∈ (0,2/3),

(26) E
[(∫ ∞

0
Xs([0, x]) ds

)q]
<∞.

To see this, recall the well-known formula P(ξ > t) = 1− exp(− α
2t) (which is easily derived

from the representation of the preceding section), and write for every λ > 0 and r > 0,

P

((∫ ∞
0

Xs([0, x]) ds
)q
> λ

)
≤ P(ξ > λr) + P

(∫ λr

0
Xs([0, x]) ds > λ1/q

)
≤ α

2λr
+

1

λ1/q

∫ λr

0
E[Xs([0, x])] ds

=
α

2λr
+

α

λ1/q

∫ λr

0
P(Bs ∈ [0, x]) ds

≤ α
(1

2
λ−r + xλr/2−1/q

)
,

where we wrote (Bt)t≥0 for a linear Brownian motion started at 0, and we used the trivial
bound P(Bs ∈ [0, x])≤ x/

√
2πs. If we take r = 2/(3q), the right-hand side of the previous

display becomes a constant, depending on x, times λ−2/(3q), which is integrable in λ with
respect to Lebesgue measure on [1,∞) if 0< q < 2/3. Our claim (26) follows.

Next let K > 0 and 0≤ x < y ≤K . We observe that Mt(sgn(x− ·))−Mt(sgn(y− ·)) is
a continuous local martingale with quadratic variation

4

∫ t

0
Xs((sgn(x− ·)− sgn(y− ·))2) ds= 16

∫ t

0
Xs([x, y]) ds.

From (26) and the Burkholder-Davis-Gundy inequalities, we obtain that, for every q ∈
[1,4/3),

E
[∣∣∣Mt(sgn(x− ·))−Mt(sgn(y− ·))

∣∣∣q]≤C(q,K),

where the constant C(q,K) only depends on K and q. Letting t tend to infinity and using (24)
together with Fatou’s lemma, we get that E[|L̇x − L̇y|q] ≤ C(q,K). By symmetry, we have
for every x > 0, E[|L̇−x − L̇0−|q] = E[|L̇x − L̇0|q] <∞, and, by (20), |L0 − L0−| = 2α.
Assertion (i) follows.

(ii) We first observe that, for every δ > 0, there is a constant Cδ (depending on α) such that,
for every δ ≤ x≤ y and every s > 0,

(27) E[Xs([x, y])2]≤Cδ (y− x)2.

To see this first use the explicit formula

E[Xs([x, y])2] = α2

(∫ y

x
qs(u)du

)2

+ 4α

∫ s

0
dr

∫
R

duqr(u)

(∫ y

x
dv qs−r(v− u)

)2

,
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where qs(u) is the Brownian transition density (see e.g. Proposition II.11 in [15]). To handle
the second term of the right-hand side, bound qs−r(v−u) by C/

√
s when r < s/2, and when

r > s/2 use
∫

duqs−r(v − u)qs−r(v
′ − u) = q2(s−r)(v − v′). The bound (27) now follows

from a short calculation.
To simplify notation, set L̂xt =−α−Mt(sgn(x− ·)). From the Burkholder-Davis-Gundy

inequalities and the bound in (27), we get the existence of a constant C such that, for every
δ ≤ x≤ y,

E[(L̂yt − L̂xt )4]≤C E
[(∫ t

0
Xs([x, y]) ds

)2]
≤C tE

[∫ t

0
(Xs([x, y]))2 ds

]
≤CCδ t2(y− x)2.

Let a > 0 and λ > 0. For every n ∈N, we can bound

P

(
sup

1≤k≤2n
|L̂1+k2−n

t − L̂1+(k−1)2−n

t |> λan

)
≤ 2n × (λan)−4 ×CC1 t

22−2n

=CC1 t
2λ−4a−4n2−n.

We fix a ∈ (0,1) such that a−4 < 2. Consider the event

A :=
⋃
n∈N

{
sup

1≤k≤2n
|L̂1+k2−n

t − L̂1+(k−1)2−n

t |> λan

}
.

We get P(A)≤ C̃ t2λ−4, where C̃ is a constant. Let D be the set of all real numbers of the
form 1 + k2−n with n ∈ N and k ∈ {0,1, . . . ,2n} On the complement of the set A, simple
chaining arguments show that we have |L̂xt − L̂

y
t | ≤Kλ |x− y|β for every x, y ∈D, where

β = − loga/ log 2 > 0 and K is a constant (which does not depend on λ). Finally, since
L̇y − L̇x = L̂yt − L̂xt on {ξ ≤ t}, we have

P

(
sup

x,y∈[1,2],x 6=y

|L̇x − L̇y|
|x− y|β

>K λ

)
= P

(
sup

x,y∈D,x6=y

|L̇x − L̇y|
|x− y|β

>K λ

)
≤ P(ξ > t) + C̃ t2λ−4

≤ α

2t
+ C̃ t2λ−4.

We apply this bound with t= λ4/3, and it follows that

E
[(

sup
x,y∈[1,2],x 6=y

( |L̇x − L̇y|
|x− y|β

)q]
<∞

for every q ∈ [1,4/3). By a minor modification of the argument, the last display still holds if
we replace [1,2] by any interval [u, v] with 0< u< v.

The following proposition determines the quadratic variation of (L̇x)x≥0. We will see later
that this process is a semimartingale (for an appropriate filtration).

PROPOSITION 11. Let x > 0, and, for every n ∈ N, let πn = {0 = xn0 < xn1 < · · · <
xnmn

= x} be a subdivision of [0, x]. Set ‖πn‖ := max{xni − xni−1 : 1≤ i≤mn}, and

Q(πn) =

mn∑
i=1

(L̇x
n
i − L̇xni−1)2.
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Assume that ‖πn‖ −→ 0 as n→∞. Then,

Q(πn) −→
n→∞

16

∫ x

0
Lx dx in probability.

PROOF. We use the same notation L̂xt =−α−Mt(sgn(x− ·)), for x≥ 0 and t≥ 0, as in
the previous proof, and we recall that L̇x = L̂xt when t≥ ξ, by (24). If 0≤ x≤ y, we have

L̂yt − L̂xt =−2Mt(1[x,y]).

Fix a subdivision π = {0 = x0 < x1 < · · ·< xm = x} of [0, x]. We will use the last display
to evaluate

Qt(π) :=

m∑
i=1

(L̂xit − L̂
xi−1

t )2.

For every i ∈ {1, . . . ,m}, set

M i
t :=−2Mt(1[xi−1,xi])

so that M i is a local martingale with quadratic variation

〈M i,M i〉t = 16

∫ t

0
Xs([xi−1, xi]) ds.

Also set

N i
t := (M i

t )
2 − 〈M i,M i〉t = 2

∫ t

0
M i
s dM i

s.

Then,

E
[(
Qt(π)− 16

∫ t

0
Xs([0, x]) ds

)2]
= E

[( m∑
i=1

(
(M i

t )
2 − 〈M i,M i〉t

))2]

= E
[ m∑
i=1

(N i
t )

2
]

+ 2
∑

1≤i<j≤m
E[N i

tN
j
t ].(28)

On one hand, we have E[N i
tN

j
t ] = 0 if i 6= j, because

〈M i,M j〉t = 16

∫ t

0
Xs([xi−1, xi]∩ [xj−1, xj ]) ds= 0

andN i
t is a stochastic integral with respect toM i Note that integrability issues are trivial here

because the random variables Xs(R), 0≤ s≤ t, are uniformly bounded in Lp, for any p <∞
(e.g., see Lemma III.3.6 of [24]). On the other hand, we can estimate E[(N i

t )
2] as follows.

Using the Burkholder-Davis-Gundy inequalities and writing C1 and C2 for the appropriate
constants, we have

E[(N i
t )

2]≤ 2
(
E[(M i

t )
4] +E[(〈M i,M i〉t)2]

)
≤C1 E[(〈M i,M i〉t)2]

=C2 E
[∫ t

0
ds

∫ t

s
drXs([xi−1, xi])Xr([xi−1, xi])

]
=C2

∫ t

0
ds

∫ t

s
drE

[
Xs([xi−1, xi])EXs

[Xr−s([xi−1, xi])]
]
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≤C2

∫ t

0
ds

∫ t

s
dr
xi − xi−1

2
√
r− s

E
[
Xs([xi−1, xi])Xs(R)

]
≤C2 (xi − xi−1)

√
t

∫ t

0
dsE

[
Xs([xi−1, xi])Xs(R)

]
.

In the fourth line of this calculation, we applied the Markov property of X, writing Pµ for
a probability measure under which X starts from µ, and, in the next line, we used the first-
moment formula for X. By summing the estimate of the last display over i ∈ {1, . . . ,m}, we
get

E
[ m∑
i=1

(N i
t )

2
]
≤C2 ‖π‖

√
t

∫ t

0
E[Xs(R)2] ds≤C2 ‖π‖

√
t (α2t+ 2αt2),

using the simple estimate E[Xs(R)2] ≤ α2 + 4αs. Finally, we deduce from (28) that, for
t≥ 1,

E
[(
Qt(π)− 16

∫ t

0
Xs([0, x]) ds

)2]
≤C3 t

5/2 ‖π‖.

We apply the latter estimate to π = πn for every n≥ 1, and it follows that, for every t≥ 1,

lim
n→∞

E
[(
Qt(πn)− 16

∫ t

0
Xs([0, x]) ds

)2]
= 0.

Since

P
(
Qt(πn) =Q(πn),

∫ t

0
Xs([0, x]) ds=

∫ ∞
0

Xs([0, x]) ds
)
≥ P(ξ ≤ t) −→

t→∞
1,

this immediately gives the convergence in probability

Q(πn) −→
n→∞

16

∫ ∞
0

Xs([0, x]) ds= 16

∫ x

0
Lx dx. �

5. The expected value of increments of the derivative of local time.

5.1. The case of the positive excursion measure. Our goal in this section is to compute
the quantities N∗,z( ˙̀a) for z > 0 and a > 0. We start with a technical estimate.

LEMMA 12. Let q ∈ [1,4/3). Then, for every 0< u< v, and n ∈N,

sup
1/n≤z≤n

N∗,z0

((
sup
u≤x≤v

| ˙̀x|
)q)

<∞.

PROOF. We will derive this result from Lemma 10, using the construction of the super-
Brownian motion (Xt)t≥0 in Section 3. Recall the definition of the exit measure process
(X0

t )t≥0 in (18) and that it is a ϕ-CSBP, where ϕ = 2ψ. By the Lamperti transformation
[13], we can write X0 as a (continuous) time change of a Lévy process with no negative
jumps and Laplace exponent ϕ, started at α, up to its first hitting time of 0. Up to enlarging
the probability space, we may assume that this Lévy process (Ut)t≥0 is defined for all t≥ 0
and we write T0 = inf{t≥ 0 : Ut = 0}. Notice that the jumps of X0 are exactly the jumps of
U on the time interval [0, T0].

Let us fix 0 < u < v. Let b > 0, and let U (1) be the Lévy process that only records the
jumps of U of size greater than b,

U (1)
t :=

∑
s≤t

∆Us 1{∆Us>b}.
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Also set U (0)
t := Ut −U (1)

t , so that U (0) and U (1) are two independent Lévy processes, with
U (1)

0 = 0 and U (0)
0 = α. We can find a constant t1 > 0 such that the probability of the

event A where U (1) has exactly one jump during [0, t1] and U (0) does not hit 0 before t1
is positive. On the event A, let ∆0 be the unique jump of U (1) on the time interval [0, t1].
Then, conditionally on the event A, ∆0 is distributed according to the probability measure
(3b3/2/2)1(b,∞)(z)z

−5/2 dz. On the event A, let ω0 be the excursion of X (above or below
0) associated with the jump ∆0. Here, recall the definition of these excursions in Section 3,
and the fact that they are in one-to-one correspondence with the jumps of X0, or equivalently
the jumps of U on [0, T0] (see especially (19) and the discussion prior to it). Also let A′ be
the event where all excursions of X above or below 0, except possibly the excursion ω0 (if it
is defined), stay in the interval (−1, u). On the event B =A ∩A′, we have La = `a(ω0) for
every a /∈ (−1, u). Then, on one hand, it follows from Lemma 10 that

(29) E
[
1B

(
sup
x∈[u,v]

|L̇x − L̇−1|
)q]

<∞.

On the other hand, the preceding remarks give

E
[
1B

(
sup
x∈[u,v]

|L̇x − L̇−1|
)q]

(30)

= E
[
1B

(
sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q]

= E
[
1A P(A′ | (Ut)0≤t≤T0

)×E
[
1A

(
sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q ∣∣∣ (Ut)0≤t≤T0

]]
]

where we use the conditional independence of the excursions of X given (X0
t )t≥0 (equiva-

lently, given (Ut)0≤t≤T0
) from (19). From Lemma 6, one easily verifies that

P(A′ | (Ut)0≤t≤T0
)> 0 a.s.

Furthermore, by (19),

E
[
1A

(
sup
x∈[u,v]

| ˙̀x(ω0)− ˙̀−1(ω0)|
)q ∣∣∣ (Ut)0≤t≤T0

]

= 1A

(
1

2
N∗,∆0

((
sup
x∈[u,v]

| ˙̀x|
)q)

+
1

2
Ň∗,∆0(| ˙̀−1(ω0)|q)

)
,

and, from (29) and (30), it follows that

1AN∗,∆0

((
sup
x∈[u,v]

| ˙̀x|
)q)

<∞ a.s.

Using the conditional distribution of ∆0 given A, we conclude that

N∗,z0

((
sup
x∈[u,v]

| ˙̀x|
)q)

<∞, for a.e. z > 0,

We have thus proved that, for a.e. z > 0,

N∗,z0

((
sup
x∈[u,v]

| ˙̀x|
)q)

<∞, for every 0< u< v.

However, if the last display holds for one value of z > 0, the scaling in property (iii) of the
measures N∗,z0 shows that it must hold for every z > 0 and in fact has a uniform bound for
z ∈ [1/n,n].
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Thanks to the above, the quantity N∗,z( ˙̀a) is well defined for every a > 0 and z > 0. It
can in fact be computed explicitly.

PROPOSITION 13. For every z > 0 and a > 0, we have

(31) N∗,z0 (`a) =
√

6π a−2 z5/2χ(
3z

2a2
)

where, for every x > 0,

χ(x) =
2√
π

(x3/2 + x1/2)− 2x(x+
3

2
)ex erfc(

√
x),

with the notation erfc(y) = 2√
π

∫∞
y e−x

2

dx. Moreover, for every z > 0 and a > 0,

(32) N∗,z0 ( ˙̀a) = z γ
( 3z

2a2

)
where, for every u > 0,

γ(u) =−8

3

√
π u3/2

(
χ(u) + uχ′(u)

)
.

Remark. The function χ is positive on (0,∞) and its Laplace transform is (1 +
√
λ)−3, cf.

the appendix of [22].

PROOF. By [22, Proposition 3], we have, for every nonnegative Borel function f on
[0,∞),

N∗,z0

(∫ ∞
0

f(a) `a da

)
= N∗,z0

(∫ σ

0
f(Ŵs) ds

)
=

∫ ∞
0

f(a)πz(a) da

where

πz(a) =
√

6π a−2 z5/2χ(
3z

2a2
),

and χ(·) is as in the statement. So, we have

(33)
∫ ∞

0
f(a)N∗,z0 (`a) da=

∫ ∞
0

f(a)πz(a) da.

It follows that N∗,z0 (`a) = πz(a) for almost every a > 0, and Fatou’s lemma then gives
N∗,z0 (`a)≤ πz(a)<∞ for every a > 0.

If a > 0 is fixed, we have N∗,z0 a.s.

(34)
1

b− a

∫ b

a

˙̀c dc=
1

b− a
(`b − `a) −→

b→a,b 6=a
˙̀a.

From Lemma 12 and dominated convergence, we get that the convergence (34) holds in
L1(N∗,z0 ). Consequently,

1

b− a
(N∗,z0 (`b)−N∗,z0 (`a)) −→

b→a,b 6=a
N∗,z0 ( ˙̀a).

It follows that the function a 7→N∗,z0 (`a) is differentiable on (0,∞), and

d

da
N∗,z0 (`a) = N∗,z0 ( ˙̀a).
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In particular, since a 7→ N∗,z0 (`a) is continuous on (0,∞), we deduce from (33) that
N∗,z0 (`a) = πz(a) for every a ∈ (0,∞), which give (31). Then

N∗,z0 ( ˙̀a) =
d

da
N∗,z0 (`a) =

√
6π
(
− 2a−3z5/2χ(

3z

2a2
)− 3a−5z7/2χ′(

3z

2a2
)
)
,

and formula (32) follows.

We now record some asymptotics of the function γ(u) introduced in the proposition, which
will be useful in the next sections. We first note that

(35) χ′(x) =
2√
π

(
x3/2 + 3x1/2 +

1

2
x−1/2

)
+
(
− 2x2 − 7x− 3

)
exerfc(

√
x),

and, for every integer N ≥ 0,

exerfc(
√
x) =

1√
π

N∑
n=0

(−1)n
1× 3× · · · × (2n− 1)

2n
x−n−1/2 +O(x−N−3/2),

as x→∞. By simple calculations it follows that, as x→∞,

(36) χ(x) =
1√
π

(3

2
x−3/2 − 15

2
x−5/2 +O(x−7/2)

)
and

(37) χ′(x) =
1√
π

(
− 9

4
x−5/2 +

75

4
x−7/2 +O(x−9/2)

)
.

Consequently,

(38) γ(x) = 2− 30

x
+O(x−2) as x→∞,

and so by (32), N∗,z0 ( ˙̀a) = 2z +O(a2) as a→ 0. Moreover, from the formulas for χ and χ′,
one has

(39) γ(x) =−8x2 + o(x2) as x→ 0,

and therefore N∗,z0 ( ˙̀a) =−18a−4 z3 + o(z3) as z→ 0.
We can also estimate

(40)

γ′(x) =
3

2

γ(x)

x
+ (−8

3

√
π)x3/2(2χ′(x) + xχ′′(x)) =

15

x
+ (−8

3

√
π)x5/2χ′′(x) +O(x−2),

as x→∞. Noting that

χ′′(x) =
2√
π

(
x3/2 + 5x1/2 + 3x−1/2 − 1

4
x−3/2

)
+
(
− 2x2 − 11x− 10

)
exerfc(

√
x),

we can verify that

x5/2χ′′(x) =
1√
π

45

8x
+O(x−2)

and consequently γ′(x) =O(x−2) as x→∞. From the first equality in (40), (35), the above
expression for χ′′, and (39), one gets that γ′(x) =−16x+ o(x) when x→ 0. It follows from
the preceding estimates for γ′ that if γ′(0) := 0, then

(41) γ′ is continuous on [0,∞),

and

(42)
∫ ∞

0
|γ′(x)|(1∨ x−1) dx <∞.
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5.2. The derivative of local times of super-Brownian motion. We now consider the super-
Brownian motion X started at X0 = αδ0 constructed as in Section 3, and its local times
(La)a∈R. We fix a≥ 0 and h > 0, and we let Θa denote the law of the pair (La, 1

2 L̇
a) under

P(· ∩ {La > 0}). Our goal is to compute the conditional expectation

E
[
L̇a+h

∣∣∣La = t,
1

2
L̇a = y

]
for t > 0 and y ∈R. Recall that we will interpret this conditional expectation as in (22), using
(21). Therefore we can unambiguously make assertions for all h > 0 simultaneously.

PROPOSITION 14. Let a≥ 0. Then, for Θa-almost every (t, y), for every h > 0, we have

E[|L̇a+h| |La = t,
1

2
L̇a = y]<∞

and

(43) E
[
L̇a+h

∣∣∣La = t,
1

2
L̇a = y

]
= E

[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
,

where (Zj)j≥1 is the sequence of jumps of the ψ-Lévy bridge Ubr,t,y , listed in decreasing
order, and

(44) E
[ ∞∑
j=1

Zj

∣∣∣γ(3Zj
2h2

)∣∣∣]<∞, for every h > 0.

PROOF. From asymptotics derived at the end of Section 5.1, we have |γ(z)| ≤ C(1 ∧ z2)
for some constant C . Hence, using the absolute continuity relation (16), we claim it is easy to
verify (44), so that the right-hand side of (43) makes sense. To see this, write the sum inside
the expectation in (44) as S1 + S2, where S1 corresponds to the contribution from jumps
occurring in [0, t/2] and S2 corresponds to those which occurred in [t/2, t]. Apply (16) to
show that E[S1]<∞, and its counterpart for the time-reversed process (y−U br,t,y

(t−s)−)0≤s≤t/2
to show E[S2]<∞.

Let h > 0. By Lemma 10 (i), E[|L̇a+h − L̇a|]<∞, and therefore we have

(45) E[|L̇a+h| | La = t,
1

2
L̇a = y]<∞, for Θa-a.e. (t, y).

By the convention noted before the Proposition, the quantity E[|L̇a+h| | La = t, 1
2 L̇

a = y] is
well defined simultaneously for every choice of t > 0, y ∈R, and h > 0. Lemma 10 (ii) shows
that (45) holds simultaneously for every h > 0, for Θa-a.e. (t, y), giving the first required
result. In what follows, we fix t > 0 and y ∈R such that (45) holds for every h > 0.

Recall the notation introduced before Proposition 9. By (21), we have

(46) L̇a+h =
∑
j∈N

˙̀a+h(ωa,+j ).

where the sum involves only a finite number of nonzero terms. We know from Proposition
9 that the conditional distribution of (ωa,+j )j∈N knowing La = t and 1

2 L̇
a = y, is the law

of ($j)j∈N, where, conditionally on the (ordered) sequence (Zj)j∈N of jumps of a ψ-Lévy
bridge Ubr,t,y , the snake trajectories $j are independent and $j is distributed according to
N∗,Zja . Therefore, (46) gives

E
[
L̇a+h

∣∣∣La = t,
1

2
L̇a = y

]
= E

[ ∞∑
j=1

˙̀a+h($j)
]
,
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where ($j)j∈N and (Zj)j∈N are as described above. Note that the (almost surely finite) sum∑∞
j=1

˙̀a+h($j) is an integrable random variable, as a consequence of (45) and (46). To get
(43) it then suffices to show that

(47) E
[ ∞∑
j=1

˙̀a+h($j)
]

= E
[ ∞∑
j=1

Zj γ
(3Zj

2h2

)]
.

For every integer n≥ 1, set Nn := max{j ∈N : Zj ≥ 1/n}, with the convention max∅ =
0. Let Hn stand for the event where Zj ≤ n for every j ∈N, and W ∗($j)< a+ h for every
j >Nn. Then,

E
[
1Hn

Nn∑
j=1

| ˙̀a+h($j)|
]

= E
[
E
[
1Hn

Nn∑
j=1

| ˙̀a+h($j)|
∣∣∣ (Zj)j∈N]]

≤ E
[
1{Zj≤n,∀j∈N}

Nn∑
j=1

N∗,Zja (| ˙̀a+h|)
]
<∞

because we know that N∗,za (| ˙̀a+h|) is bounded by a constant if 1/n ≤ z ≤ n (Lemma 12),
and it is easy to verify that E[Nn |La = t, L̇a = y] <∞. For the latter we again may use
the absolute continuity of the law of the Lévy bridge Ubr,t,y with respect to the law of the
Lévy process U in (16), and the analogue for the time-reversed processes, to count the jumps
occurring in [0, t/2] and [t/2, t] separately. The preceding display allows us to interchange
sum and expected value in the following calculation,

E
[
1Hn

Nn∑
j=1

˙̀a+h($j)
]

=

∞∑
j=1

E
[
1Hn1{j≤Nn}

˙̀a+h($j)
]

=

∞∑
j=1

E
[
1Hn1{j≤Nn}N

∗,Zj
a ( ˙̀a+h)

]

=

∞∑
j=1

E
[
1Hn1{j≤Nn}Zjγ

(3Zj
2h2

)]
,

where (32) is used in the last. In the second equality, we also use the conditional independence
of the excursions $j given their boundary sizes Zj . The left-hand side of the last display is
equal to

E
[
1Hn

∞∑
j=1

˙̀a+h($j)
]
−→
n→∞

E
[ ∞∑
j=1

˙̀a+h($j)
]

by dominated convergence (recall that the variable
∑∞

j=1
˙̀a+h($j) is integrable). On the

other hand, the right-hand side is

E
[
1Hn

Nn∑
j=1

Zjγ
(3Zj

2h2

)]
−→
n→∞

E
[ ∞∑
j=1

Zjγ
(3Zj

2h2

)]
by dominated convergence again, using (44). This completes the proof of (47), and hence of
the proposition.

Remark. The last proof would be shorter if one could verify that E
[∑∞

j=1 | ˙̀a+h($j)|
]
<∞.

However, this does not seem to follow from our estimates.

Recall the notation pt(y) for the density at time t of the Lévy process U in Section 2.5.
To simplify notation, we also set c1 :=

√
3/8π, so that the Lévy measure of U is 1

2n(dz) =
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c1z
−5/2 1(0,∞)(z) dz. For h, t > 0 and y ∈R, we introduce

(48) gh(t, y) =
1

h

c1t

pt(y)

∫ ∞
0

(
pt(y)− pt(y− h2z)

)(
2− γ

(3z

2

)) dz

z3/2
,

and set gh(0, y) = 0. The boundedness of pt, |p′t| and |γ| (the latter from (38) and (39)), and
the Mean Value Theorem, show that the above integrand is integrable on [0,∞).

PROPOSITION 15. Let a ≥ 0. For Θa-almost every (t, y) ∈ (0,∞) × R, we have, for
every h > 0,

E
[
L̇a+h − L̇a

∣∣∣La = t,
1

2
L̇a = y

]
= gh(t, y),

and

lim
h→0

1

h
E
[
L̇a+h − L̇a

∣∣∣La = t,
1

2
L̇a = y

]
= 8 t

p′t(y)

pt(y)
.

PROOF. From now on we fix t > 0 and y ∈ R such that (43) holds for every h > 0, and
we let the sequence (Zj)j∈N be as in Proposition 14. The first statement of Proposition 15
will follow from the computation of

E
[∑
j∈N

Zj γ
(3Zj

2h2

)]
.

We consider the Lévy process U with Laplace exponent ψ described in the Introduction and
Section 2.5. Write (Yj)j∈N for the collection of jumps of U over [0, t] (ranked in decreasing
size), so that we have

(49) E
[∑
j∈N

Zj γ
(3Zj

2h2

)]
= E

[∑
j∈N

Yj γ
(3Yj

2h2

)∣∣∣Ut = y
]
.

(Recall that, when we write E[· | Ut = y], this means that we integrate with respect to the law
of the ψ-Lévy bridge from 0 to y in time t.) We will first compute, for every ε > 0,

E
[∑
j∈N

Yj 1{Yj>ε}

∣∣∣Ut = y
]
.

To this end, we evaluate, for every u ∈R,

E
[(∑

j∈N
Yj 1{Yj>ε}

)
eiuUt

]
.

Set

Rε =
∑
j∈N

Yj 1{Yj>ε} − 2 c1 t ε
−1/2 −Ut.

The facts that E[|Ut|]<∞ and E[
∑

j∈N Yj 1{Yj>ε}] = t
2

∫∞
ε xn(dx)<∞ imply

(50) E[|Rε|]<∞.

Recall that E[eiuUt ] = e−tΨ(u), where Ψ(u) = c0|u|3/2 (1 + i sgn(u)), with c0 = 1/
√

3. Then

(51) E[Rε e
iuUt ] = E

[(∑
j∈N

Yj 1{Yj>ε}

)
eiuUt

]
− 2 c1 t ε

−1/2 e−tΨ(u) − i tΨ′(u)e−tΨ(u),
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because

E[Ut e
iuUt ] =−i

d

du
E[eiuUt ] = i tΨ′(u)e−tΨ(u).

By a classical formula for Poisson measures (Mecke’s formula, cf. Theorem 4.1 in [14]), we
have

E
[(∑

j∈N
Yj 1{Yj>ε}

)
eiuUt

]
= c1t

∫ ∞
ε

eiuz dz

z3/2
× e−tΨ(u).

Now note that ∫ ∞
ε

eiuz dz

z3/2
= 2ε−1/2 −

∫ ∞
ε

(1− eiuz)
dz

z3/2
,

and

−
∫ ∞
ε

(1− eiuz)
dz

z3/2
=−

∫ ∞
0

(1− eiuz)
dz

z3/2
+

∫ ε

0
(1− eiuz)

dz

z3/2

=−
√

2π(1− i sgn(u)) |u|1/2 +

∫ ε

0
(1− eiuz)

dz

z3/2
.

On the other hand, since Ψ′(u) = 3
2c0|u|1/2(1 + i sgn(u))× sgn(u) = 3

2c0|u|1/2(i + sgn(u)),
we have

i tΨ′(u) =
3

2
c0 t|u|1/2(−1 + i sgn(u)) =−c1 t

√
2π|u|1/2 (1− i sgn(u)).

By substituting the preceding calculations in (51), we get after simplifications

(52) E[Rε e
iuUt ] = c1 t

(∫ ε

0
(1− eiuz)

dz

z3/2

)
e−tΨ(u).

Let ϕε(x) = E[Rε | Ut = x] for x ∈R. Use (50) to see that

(53)
∫
R
|ϕε(x)|pt(x) dx≤

∫
R
E[|Rε| |Ut = x]pt(x) dx= E[|Rε|]<∞.

We have

(54) E[Rεe
iuUt ] = E[E[Rε | Ut]eiuUt ] =

∫
R
ϕε(x)pt(x)eiux dx.

On the other hand, for 0< δ < ε, we can write

e−tΨ(u)

∫ ε

δ
eiuz dz

z3/2
=

∫ ε

δ

(∫
R
pt(x)eiux dx

)
eiuz dz

z3/2
=

∫ ε

δ

(∫
R
pt(x−z)eiux dx

) dz

z3/2
,

and

e−tΨ(u)

∫ ε

δ
(1− eiuz)

dz

z3/2
=

∫ ε

δ

(∫
R
(pt(x)− pt(x− z))eiux dx

) dz

z3/2

=

∫
R

(∫ ε

δ
(pt(x)− pt(x− z))

dz

z3/2

)
eiuxdx.

The last display remains valid for δ = 0 as we now show. By dominated convergence to
justify the passage to the limit δ→ 0, it suffices to show

(55)
∫
R

(∫ ε

0
|pt(x)− pt(x− z)|

dz

z3/2

)
dx <∞.
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For this, use the fact that x 7→ pt(x) is unimodal (see Section 2.5) to observe that for K large,
for x≥K , and 0≤ z ≤ ε, one has |pt(x)− pt(x− z)|= pt(x− z)− pt(x) and thus∫

[K,∞)

(∫ ε

0
|pt(x)− pt(x− z)|

dz

z3/2

)
dx=

∫ ε

0

(∫
[K−z,K]

pt(x) dx
) dz

z3/2
<∞

because pt is bounded, argue similarly for x≤−K , and use |pt(x)− pt(x− z)| ≤Cz when
−K ≤ x≤K , where C is a bound for |p′t|. So we have shown (55), and therefore,

(56) e−tΨ(u)

∫ ε

0
(1− eiuz)

dz

z3/2
=

∫
R

(∫ ε

0
(pt(x)− pt(x− z))

dz

z3/2

)
eiux dx.

From (54),(52), and then (56), we get

(57)
∫
R
ϕε(x)pt(x)eiux dx= c1 t

∫
R

(∫ ε

0
(pt(x)− pt(x− z))

dz

z3/2

)
eiux dx.

Observe that both functions x 7→ pt(x)ϕε(x) and

x 7→
∫ ε

0
(pt(x)− pt(x− z))

dz

z3/2

are integrable with respect to Lebesgue measure and continuous. For the second function, we
use (55) for integrability, and for continuity we apply the dominated convergence theorem
(with the bound |pt(x)− pt(x− z)| ≤ C z). For the first one, we use (53) for integrability,
but we have to check that ϕε is continuous. This is however easy thanks to the the absolute
continuity relation between the Lévy bridge and the Lévy process. In fact, write tj for the
time at which the jump Yj occurs. Then, we have from (16) that

E

[ ∑
j∈N,tj∈[0,t/2]

Yj1{Yj>ε}

∣∣∣∣∣Ut = x

]
= E

[( ∑
j∈N,tj∈[0,t/2]

Yj1{Yj>ε}

)
pt/2(x−Ut/2)

pt(x)

]
,

where the right-hand side is clearly a continuous function of x. A time-reversal argument
shows the same conclusion if we instead take tj ∈ [t/2, t], and the desired continuity property
of ϕε follows.

From (57) and the above regularity, we conclude that, for every x ∈R,

ϕε(x) = c1 t
1

pt(x)

∫ ε

0
(pt(x)− pt(x− z))

dz

z3/2
.

Therefore, from the definition of Rε we have

(58) E
[∑
j∈N

Yj 1{Yj>ε}

∣∣∣Ut = y
]

= y+2 c1 t ε
−1/2 +c1 t

1

pt(y)

∫ ε

0
(pt(y)−pt(y−z))

dz

z3/2
.

The facts that limx→0 γ(x) = 0 and γ′ is continuous on [0,∞) (i.e., (39) and (41)) imply

∑
j∈N

Yj γ
(3Yj

2h2

)
=
∑
j∈N

Yj

∫ 3Yj

2h2

0
γ′(u) du=

∫ ∞
0

(∑
j∈N

Yj 1{Yj>2h2u/3}

)
γ′(u) du,

where the interchange between summation and integration holds by the bound |γ′(u)| ≤C u
and the fact that P(

∑
j∈N Y

2
j <∞|Ut = y) = 1. (The latter again holds for our fixed value of

y by the usual Radon-Nikodym argument.) From the last display, we get

(59) E
[∑
j∈N

Yj γ
(3Yj

2h2

)∣∣∣Ut = y
]

=

∫ ∞
0

E
[∑
j∈N

Yj 1{Yj>2h2u/3}

∣∣∣Ut = y
]
γ′(u) du,
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where now the interchange between expectation and Lebesgue integration is justified by the
fact that ∫ ∞

0
E
[∑
j∈N

Yj 1{Yj>2h2u/3}

∣∣∣Ut = y
]
|γ′(u)|du <∞.

This holds thanks to (58), the fact that
∫∞

0 |γ
′(u)| (1∨ u−1/2) du <∞ (by (42)), and

(60)
∫ ∞

0
|pt(y)− pt(y− z)|z−3/2 dz <∞,

where the last follows from the boundedness of |p′t|. It follows from (59) and (58) that
(61)

E
[∑
j∈N

Yj γ
(3Yj

2h2

)∣∣∣Ut = y
]

= 2y+
c1t

pt(y)

∫ ∞
0

(∫ 2h2u/3

0
(pt(y)−pt(y−z))

dz

z3/2

)
γ′(u)du,

where we used the equalities∫ ∞
0

γ′(u) du= lim
K→∞

(γ(K)− γ(1/K)) = 2

(by (38) and (39)), and ∫ ∞
0

γ′(u)√
u

du= 0.

To get the last equality, first note that

γ′(u)√
u

=−8

3

√
π
(3

2
(χ(u) + uχ′(u)) + u(2χ′(u) + uχ′′(u))

)
=−8

3

√
π

d

du

(3

2
uχ(u) + u2χ′(u)

)
,

and then apply the asymptotics for χ and χ′ from Section 5.1, namely (36) and (37). Finally,
by γ(K)→ 2 as K→∞ (by (38) again), we have∫ ∞

0

(∫ 2h2u/3

0
(pt(y)− pt(y− z))

dz

z3/2

)
γ′(u)du

=

∫ ∞
0

(pt(y)− pt(y− z))
(

2− γ
( 3z

2h2

)) dz

z3/2
.

(The interchange of integrals is justified by (60) and (42).) Insert this into the right-hand side
of (61), and then recall (43) and (49), to obtain the explicit formula

E[L̇a+h − L̇a | La = t,
1

2
L̇a = y] =

c1t

pt(y)

∫ ∞
0

(pt(y)− pt(y− z))
(

2− γ
( 3z

2h2

)) dz

z3/2

=
1

h

c1t

pt(y)

∫ ∞
0

(pt(y)− pt(y− h2z))
(

2− γ
(3z

2

)) dz

z3/2
.

This gives the first part of the proposition. The second part is then immediate from the fol-
lowing elementary lemma.

Recall the definition of the function g in Theorem 1.

LEMMA 16. There is a function δ(h)→ 0 as h→ 0, so that for any K ∈ N and some
constant C(K),

sup
K−1≤t≤K,|y|≤K

∣∣∣1
h
gh(t, y)− g(t, y)

∣∣∣≤C(K)δ(h).
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PROOF. Note that

(62)
1

h
gh(t, y) =

c1t

pt(y)

∫ ∞
0

pt(y)− pt(y− h2z)

h2z

(
2− γ

(3z

2

)) dz√
z
,

while (38) and (39) imply that

(63)
∫ ∞

0
|2− γ

(3z

2

)
| dz√

z
<∞.

A tedious but straightforward calculation, left for the reader, gives

c1

∫ ∞
0

(
2− γ

(3z

2

)) dz√
z

= 8.

Using the above in (62), we conclude that

(64)
∣∣∣1
h
gh(t, y)− g(t, y)

∣∣∣≤ c1t

pt(y)

∫ ∞
0

∣∣∣pt(y)− pt(y− h2z)

h2z
− p′t(y)

∣∣∣ |2− γ(3z

2

)
| dz√

z
.

The mean value theorem implies that∣∣∣pt(y)− pt(y− h2z)

h2z
− p′t(y)

∣∣∣≤ (‖p′′t ‖∞h2z)∧ (2‖p′t‖∞).

The boundedness of |p′1| and |p′′1| (Section 2 of [26]) and scaling imply that ‖p′t‖∞ ≤ ct−4/3

and ‖p′′t ‖∞ ≤ ct−2. Moreover, pt(y) is bounded below by a positive constant (depending
on K) when 1/K ≤ t ≤ K and |y| ≤ K . Now use the above bounds in (64) to bound the
right-hand side of (64), and hence also the left-hand side, for |y| ≤K and 1/K ≤ t≤K by

C(K)

∫ ∞
0

((h2z)∧ 1)|2− γ
(3z

2

)
| dz√

z
.

To complete the proof, define δ(h) to be the above integral and use (63) to see that δ(h)→ 0
as h→ 0 by dominated convergence.

6. A stochastic differential equation. In this section, we derive the stochastic differen-
tial equation satisfied by the process (Lx, L̇x)x≥0. Recall that for every t > 0 and y ∈R,

g(t, y) := 8 t
p′t(y)

pt(y)
,

and g(0, y) = 0 for every y ∈R. Recall also the notation R for the supremum of the support
of Y. By (2), we have R= inf{x≥ 0 : Lx = 0}.

LEMMA 17. We have
∫ R

0
|g(Lx,

1

2
L̇x)|1{g(Lx, 1

2
L̇x)<0} dx <∞ a.s.

PROOF. By scaling, we have, for every t > 0 and y ∈R,

(65) g(t, y) = 8 t
p′t(y)

pt(y)
= 8 t1/3

p′1(yt−2/3)

p1(yt−2/3)
.

The unimodality of the function p1 (Theorem 2.7.5 of [26]) shows that there is a constant
y0 ∈ R such that p′1(y)≥ 0 for every y ≤ y0. Recall from (5) that |p′1(y)/p1(y)| is bounded
above by a constant C when y ≥ y0. Hence, if g(t, y)< 0 (forcing p′1(yt−2/3)< 0 and thus
yt−2/3 > y0), we obtain from the above that |g(t, y)| ≤ 8C t1/3. Finally, we get∫ R

0
|g(Lx,

1

2
L̇x)|1{g(Lx, 1

2
L̇x)<0} dx≤

∫ R

0
8C (Lx)1/3 dx <∞ a.s.,

which completes the proof.
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We now turn to the proof of our main result.

PROOF OF THEOREM 1. Let n ∈N. By Proposition 15 (and the known Markov property
of (Lx, L̇x)x≥0), we have for every u≥ 0,

(66) E[ L̇u+ 1

n − L̇u | (Lr, L̇r)r≤u] = E[ L̇u+ 1

n − L̇u | Lu, L̇u] = g1/n(Lu,
1

2
L̇u) a.s.

Note that the equality of the last display is trivial on the event {Lu = 0}= {u≥R}.
For every real K > 1, set

(67) TK := inf{x≥ 0 : Lx ∨ |L̇x| ≥K or Lx ≤ 1/K},

and for every real a≥ 0, let [a]n be the largest number of the form j/n, j ∈ Z, smaller than
or equal to a. Fix 0< s < t, and let f be a bounded continuous function on [0,∞)×R. We
evaluate

RKn (s, t) :=E

[(
L̇[t]n∧TK − L̇[s]n∧TK

−
n[t]n−n[s]n−1∑

j=0

1{[s]n+ j

n
<TK}g1/n

(
L[s]n+j/n,

1

2
L̇[s]n+j/n)

))
f(L[s]n , L̇[s]n)

]
,

where g1/n is defined in (48). To this end, we observe that

L̇[t]n∧TK − L̇[s]n∧TK =

n[t]n−n[s]n−1∑
j=0

1{[s]n+ j

n
<TK}

(
L̇[s]n+ j+1

n − L̇[s]n+ j

n

)
(68)

− 1{[s]n≤TK<[t]n}

(
L̇[s]n+ jn

n − L̇TK
)

where jn = inf{j ∈ Z+ : [s]n + j
n ≥ TK}. Note that, on the event {[s]n ≤ TK < [t]n}, we

have 0≤ [s]n + jn
n − TK ≤

1
n .

For every 0≤ j ≤ n[t]n − n[s]n − 1, (66) gives

E
[
L̇[s]n+ j+1

n − L̇[s]n+ j

n

∣∣∣ (Lr, L̇r)r≤[s]n+ j

n

]
= g1/n

(
L[s]n+ j

n ,
1

2
L̇[s]n+ j

n

)
,

so that
(69)

E
[(
L̇[s]n+ j+1

n − L̇[s]n+ j

n − g1/n

(
L[s]n+ j

n ,
1

2
L̇[s]n+ j

n

))
× 1{[s]n+ j

n
<TK}f(L[s]n , L̇[s]n)

]
= 0.

If we now replace L̇[t]n∧TK − L̇[s]n∧TK by the right-hand side of (68) in the definition of
RKn (s, t), and then use (69), we get

RKn (s, t) =−E
[
1{[s]n≤TK<[t]n}

(
L̇[s]n+ jn

n − L̇TK
)
f(L[s]n , L̇[s]n)

]
.

By Lemma 10(ii), we have

E

[
sup

s/2≤x<y≤t+1

( |L̇y − L̇x|
|y− x|β

)]
<∞

where β > 0. Provided that n is sufficiently large so that [s]n > s/2, we thus get

(70) |RKn (s, t)| ≤C n−β,
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where C is a constant. When n→∞, we have

(71) (L̇[t]n∧TK , L̇[s]n∧TK )
a.s.−→ (L̇t∧TK , L̇s∧TK ),

and we claim that

(72)
n[t]n−n[s]n−1∑

j=0

1{[s]n+ j

n
<TK}g1/n

(
L[s]n+j/n,

1

2
L̇[s]n+j/n

)
a.s.−→
∫ t∧TK

s∧TK
g
(
Lu,

1

2
L̇u
)

du.

To justify (72), note that

n[t]n−n[s]n−1∑
j=0

1{[s]n+ j

n
<TK}g1/n(L[s]n+j/n,

1

2
L̇[s]n+j/n)

=

∫ [t]n

[s]n

ng1/n(L[r]n ,
1

2
L̇[r]n)1{[r]n<TK} dr.

Lemma 16 implies that

lim
n→∞

sup
r<TK

|ng1/n(L[r]n ,
1

2
L̇[r]n)− g(Lr,

1

2
L̇r)|= 0,

and (72) now follows.
It follows from (70), (71), (72) and the definition of RKn (s, t) (justification is simple be-

cause stopping at time TK makes the dominated convergence theorem easy to apply) that

E

[(
L̇t∧TK − L̇s∧TK −

∫ t∧TK

s∧TK
g(Lu,

1

2
L̇u) du

)
f(Ls, L̇s)

]
= 0.

We have assumed that s > 0, but clearly we can pass to the limit s ↓ 0 to derive the last
display for s= 0. Hence,

L̇t∧TK − L̇0 −
∫ t∧TK

0
g(Lu,

1

2
L̇u) du

is a martingale with respect to the filtration F◦t := σ
(

(Lr, L̇t)r≤t

)
.

For ε ∈ (0,1), set Sε = inf{r ≥ 0 : Lr ≤ ε}. We get that

M ε
t := L̇t∧Sε − L̇0 −

∫ t∧Sε

0
g(Lu,

1

2
L̇u) du

is a local martingale (note that, ifRK := inf{x≥ 0 : Lx∨|L̇x| ≥K},M ε
t∧RK is a martingale,

and RK ↑∞ as K ↑∞).
We next claim the quadratic variation of M ε is

(73) 〈M ε,M ε〉t = 16

∫ t∧Sε

0
Lr dr.

To derive this from Proposition 11, fix t > 0 and let πn = {0 = tn0 < tn1 < · · ·< tnmn
= t} be

a sequence of subdivisions of [0, t] such that ‖πn‖= max1≤i≤mn
(tni − tni−1)→ 0 as n→∞.

If X is a stochastic process let Q(πn,X) =
∑mn

i=1(X(tni )−X(tni−1))2. Then, taking limits
in probability with respect to P(·|Sε ≥ t) we have,

〈M ε,M ε〉t = lim
n→∞

Q(πn,M
ε) = lim

n→∞
Q(πn, L̇) = 16

∫ t

0
Lr dr,
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where we use Proposition 11 in the last equality, and the fact that t ≤ Sε in the second
equality. This shows that 〈M ε,M ε〉t = 16

∫ t∧Sε
0 Lr dr a.s. on {t ≤ Sε} (this conclusion is

trivial if this latter set is null, so the implicit assumption above that it is not null is justified).
By taking left limits through rational values, it follows that

〈M ε,M ε〉t = 16

∫ t∧Sε

0
Lr dr for every t≤ Sε a.s.

Since 〈M ε,M ε〉t is constant for t≥ Sε, (73) follows.
If we set

B̃ε
t =

∫ t

0

1

4
√
Lr

dM ε
r

then B̃ε is a local martingale with quadratic variation

(74) 〈B̃ε, B̃ε〉t = t∧ Sε.

In particular, B̃ε is a (true) martingale. Up to enlarging the probability space, we can find
a linear Brownian motion B′ with B′0 = 0, which is independent of X, and thus also of
(Lx, L̇x)x∈R. We introduce the (completion of the) filtration Ft := F◦t ∨ σ(B′r : 0 ≤ r ≤ t),
so that B̃ε remains a martingale in this filtration. If we set

Bε
t = B̃ε

t +

∫ t

t∧Sε
dB′s

then one immediately verifies that Bε is a martingale of (Ft)t≥0 and

〈Bε,Bε〉t = t.

Therefore Bε is a linear Brownian motion.
Next, suppose that 0< ε′ < ε < 1. By construction, we have B̃ε

t = B̃ε′

t∧Sε . We can deduce
from this that B̃ε

Sε
converges in probability when ε→ 0. Indeed, for every t > 0,

E[(B̃ε
Sε∧t − B̃

ε′

Sε′∧t)
2] = E[(B̃ε′

Sε∧t − B̃
ε′

Sε′∧t)
2] = E[Sε ∧ t− Sε′ ∧ t] −→

ε,ε′→0,ε′<ε
0,

since we know that Sε ↑ R as ε ↓ 0. Let Γ stand for the limit in probability of B̃ε
Sε

when
ε→ 0.

Define a process B̃0 by setting B̃0
t = B̃ε

t on the event {t < Sε} (note this does not depend
on the choice of ε) and B̃0

t = Γ on the event {t≥R}. Finally set

Bt := B̃0
t∧R +

∫ t

t∧R
dB′s.

Then, it is straightforward to verify that Bε
t converges in probability to Bt when ε→ 0, for

every t≥ 0 (on the event {t≥R} use the convergence in probability of B̃ε
Sε

to Γ = B̃0
R). The

process (Bt)t≥0 has right-continuous sample paths and the same finite-dimensional marginals
as a linear Brownian motion, hence (Bt)t≥0 is a linear Brownian motion. More precisely, it
is not hard to verify that (Bt)t≥0 is an (Ft)-Brownian motion.

Next note that

M ε
t = 4

∫ t∧Sε

0

√
Ls dB̃ε

s = 4

∫ t∧Sε

0

√
Ls dBs,

since B̃ε
·∧Sε =Bε

·∧Sε =B·∧Sε . Therefore, we get

(75) L̇t∧Sε = L̇0 + 4

∫ t∧Sε

0

√
Ls dBs +

∫ t∧Sε

0
g(Ls,

1

2
L̇s) ds.
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When ε→ 0, L̇t∧Sε converges to L̇t∧R and
∫ t∧Sε

0

√
Ls dBs converges to

∫ t∧R
0

√
Ls dBs in

probability. It follows that
∫ t∧Sε

0 g(Ls, 1
2 L̇

s) ds also converges in probability to a finite ran-
dom variable. By Lemma 17, this is only possible if∫ t∧R

0
g(Ls,

1

2
L̇s)1{g(Ls, 1

2
L̇s)>0} ds <∞ a.s.,

and therefore by the same lemma,∫ t∧R

0
|g(Ls,

1

2
L̇s)|ds <∞ a.s.,

which by (2) gives the first assertion in Theorem 1. We may now let ε→ 0 in (75), to conclude
that

L̇t∧R = L̇0 + 4

∫ t∧R

0

√
Ls dBs +

∫ t∧R

0
g(Ls,

1

2
L̇s) ds.

Since Ls = L̇s = 0 when s > R by (2), this implies the stochastic differential equation (1).
It remains to establish the pathwise uniqueness claim. Let (Xx, Y x) be any solution to

(1) such that (X0, Y 0) = (L0, L̇0) and (Xx, Y x) = (XR′ , Y R′) for all x > R′ = inf{x≥ 0 :
Xx = 0}. The smoothness of pt(y) in (t, y) ∈ (0,∞)× R and strict positivity of pt(y) for
t > 0 show that g(t, y) is Lipschitz on [1/K,K] × [−K,K], as is (t, y)→

√
t. The clas-

sical proof of pathwise uniqueness in Itô equations with locally Lipschitz coefficients (e.g.
Theorem 3.1 in Chapter IV of [11]) now shows that if TK is as in (67) and T ′K is the anal-
ogous stopping time for (X,Y ), then TK = T ′K and (Xx∧T ′K , Y x∧T ′K ) = (Lx∧TK , L̇x∧TK )
for all x ≥ 0 a.s. Then T ′K = TK ↑ R <∞ a.s., and taking limits along {TK}, we see that
R = R′, (XR, Y R) = (LR, L̇R) = (0,0) and (Xx∧R, Y x∧R) = (Lx∧R, L̇x∧R) for all x ≥ 0
a.s. It therefore follows that (X,Y ) = (L, L̇) a.s. (both are (0,0) for x >R) and the pathwise
uniqueness claim is proved.

We now show how a transformation of the state space and random time change can reduce
the SDE (1) to a simple one-dimensional diffusion. We will only use the equation (1) and
standard stochastic analysis in this discussion. In particular, we could replace (Lx, L̇x) by
any solution to (1) in [0,∞)× R starting from an arbitrary initial condition in (0,∞)× R.
Recall that R= inf{x≥ 0 : Lx = 0}.

PROPOSITION 18. (a) We have

(76)
∫ R

0
(Lx)−1/3dx=∞ a.s.,

and therefore can introduce the time change

τ(t) = inf{x≥ 0 :

∫ x

0
(Ly)−1/3dy ≥ t}<R, t≥ 0.

(b) Set Zx := L̇x(Lx)−2/3 for every x ∈ [0,R), and Z̃t := Zτ(t) and L̃t := Lτ(t) for every
t≥ 0. The process (Z̃t, L̃t)t≥0 is the pathwise unique solution of the equation

Z̃t = Z̃0 + 4Wt +

∫ t

0
b(Z̃s) ds(77)

L̃t = L̃0 +

∫ t

0
L̃sZ̃s ds,(78)
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where W is a linear Brownian motion, and, for z ∈R,

(79) b(z) := 8
p′1
p1

(z
2

)
−2

3
z2 =−2

3
sgn(z)z2 +O

( 1

|z|

)
as z→±∞.

(c) The process (Z̃t)t≥0 is the pathwise unique solution of (77) and is a recurrent one-
dimensional diffusion process. As t→∞, Z̃t converges weakly (in fact, in total variation)
to its unique invariant probability measure ν(dz) = Cp1( z2)2 exp(− z3

36) dz, where C > 0.
Moreover,

(80) L̃t = L̃0 exp
(∫ t

0
Z̃s ds

)
for all t≥ 0.

Remark. It is interesting to compare (76) with Hong’s results [10] showing that

lim
y↑R

log(Ly)

log(R− y)
= 3 a.s.

PROOF. It will be useful to analyze the left tail of p′1/p1 and so give a counterpart of the
O(1/y) right tail behavior in (4). One argues just as before, using the representation in terms
of Airy functions (see (3) and (4)). In fact the calculation using the asymptotics of Ai and
Ai′, is now easier, but the behavior is quite different:

(81)
p′1
p1

(y) =
2

3
y2 +

1

2y
+O

( 1

y4

)
as y→−∞.

From (4) and (81), we obtain the asymptotics in (79). Then, by (65) we may write (1) as

(82)
L̇x = L̇0 + 4

∫ x

0

√
Ly dBy +

∫ x

0
8(Ly)1/3 p

′
1

p1

(Zy
2

)
dy

Lx = L0 +

∫ x

0
L̇y dy,

where Zx = 0 for x ≥ R by convention. We analyze the above using the coordinates
(Zx,Lx), which by Itô calculus satisfy for x <R,

(83)
Zx = Z0 + 4

∫ x

0
(Ly)−1/6 dBy +

∫ x

0
(Ly)−1/3 b(Zy) dy

Lx = L0 +

∫ x

0
(Ly)−1/3LyZy dy.

The precise meaning of the above is that it holds for the equation stopped at Rε = inf{y ≥ 0 :

Ly ≤ ε} for all ε > 0. We set ρ :=
∫ R

0 (Lx)−1/3dx and now use the random time change τ(t)
introduced in part (a) of the proposition, observing that this random change makes sense only
for t < ρ (at present, we do not yet know that ρ=∞ a.s.). If Z̃t := Zτ(t) and L̃t := Lτ(t) for
t < ρ, it follows that

Z̃t = Z̃0 + 4Wt +

∫ t

0
b(Z̃s) ds(84)

L̃t = L̃0 +

∫ t

0
L̃sZ̃s ds,(85)
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where Wt =
∫ τ(t)

0 (Ly)−1/6 dBy . Again the above equation means that for all ε > 0, it holds
for the equation stopped at ρε := τ−1(Rε) =

∫ Rε
0 (Lx)−1/3dx = inf{t ≥ 0 : L̃t ≤ ε}. Then

Wt∧ρε =
∫ τ(t∧ρε)

0 (Ly)−1/6 dBy is a continuous local martingale, with quadratic variation

(86) 〈W·∧ρε ,W·∧ρε〉t =

∫ τ(t∧ρε)

0
(Ly)−1/3 dy = t∧ ρε.

Note that (85) implies that (80) holds for t < ρ.
By the same method as in the proof of Theorem 1 (compare (86) with (74)), we may

assume thatWt is defined for every t≥ 0 and is a linear Brownian motion. It follows from the
definition of ρ that lim inft↑ρ L̃t = 0, and therefore by (80) (for t < ρ) we have lim inft↑ρ Z̃t =

−∞ a.s. on {ρ <∞}. Therefore Z̃ is the unique solution of (77) up to its explosion time
ρ≤∞ (again use Theorem 3.1 in Chapter IV of [11]). By (79) the explosion time of Z̃ must
be infinite a.s. (see Theorem 3.1(1) of Chapter VI of [11]). We conclude that ρ =∞ a.s.,
giving part (a) of the proposition, as well as (80) and the fact that Z̃ is the pathwise unique
solution of (77) in (c).

The other assertions are now easily derived. Equations (77) and (78) are just (84) and (85)
written for every t ≥ 0. Pathwise uniqueness for the system (77), (78) again follows from
Theorem 3.1 in Chapter IV of [11] by the local Lipschitz nature of the drift coefficient. This
completes the proof of (b).

By (77) above and (2) of Chapter 33 of [12], Z̃ is a one-dimensional diffusion with scale
function

s(x) =

∫ x

0
exp
(
−
∫ y

0

b(z)

8
dz
)

dy = c

∫ x

0
p1

(y
2

)−2
exp
(y3

36

)
dy,

where c > 0 is a constant. The scale function maps R onto R (as is clear from the above
asymptotics for b in (79)), and in particular, Z̃ is a recurrent diffusion (all points are vis-
ited w.p. 1 from every starting point). From Chapter 33 of [12] (see the discussions prior to
Theorem 33.1 and after Theorem 33.9 in [12]), the speed measure of the diffusion s(Z̃t) has
density (4s′ ◦ s−1(y))−2, and is thus a finite measure since∫

R
(s′ ◦ s−1(y))−2 dy =

∫
R
(s′(x))−1 dx <∞,

using (79) for the last. By Lemmas 33.17 and 33.19 in [12], the diffusion s(Z̃t) has a unique
invariant measure which is proportional to its speed measure, and starting at any initial point,
will converge weakly to it (in fact in total variation) as t→∞. Therefore Z̃t has a unique
invariant probability with density proportional to 1/s′(x), and will converge to it in the same
sense. The proof of (c) is complete.

The asymptotics for p1 are p1(x) ∼ c−
√
|x| exp

(
−2

9 |x|
3
)

as x → −∞ and p1(x) ∼
c+|x|−5/2 as x→∞, where c± > 0, and ∼ means the ratio approaches 1 (e.g. [7] but re-
call our p1 differs by a scaling constant). This shows that the invariant density of Z̃ satisfies

f(x)∼

C−|x| exp
(
− |x|

3

36

)
as x→−∞

C+|x|−5 exp
(
− |x|

3

36

)
as x→+∞,

where C± > 0.
In terms of our original local time the weak convergence in (c) means that

L̇τ(t)

(Lτ(t))2/3
converges weakly to Cp1

(x
2

)2
exp
(
−x

3

36

)
dx as t→∞,
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where τ(t) ↑R as t→∞. Again this can be compared with the cubic behavior of Lx near its
extinction time from [10].

Note in the above that τ ′(t) = L̃
1/3
t is recoverable from (L0, Z̃) by (80), and so one can

reverse the above construction and build (Lx, L̇x) from the diffusion Z̃ and a given initial
condition L0 > 0. The following proposition is immediate from the discussion above and
uniqueness in law in (77).

PROPOSITION 19. On a filtered probability space (Ω,F , (Ft), P ), let W be an (Ft)-
Brownian motion and let (Λ0, Z̃0) be a pair of F0-measurable random variables with values
in (0,∞)×R. There is a pathwise unique solution, (Z̃t)t≥0, to dZ̃t = 4dWt + b(Z̃t)dt with
initial value Z̃0. For every t > 0, set

Λ̃t = Λ0 exp
(∫ t

0
Z̃s ds

)
.

Then the following holds.
(a) Λ̃∞ := limt→∞ Λ̃t = 0, limt→∞(Λ̃t)

2/3Z̃t = 0, and R=
∫∞

0 (Λ̃s)
1/3 ds <∞ a.s.

(b) Introduce the random time change∫ σ(x)

0
(Λ̃s)

1/3 ds= x for x <R, and set σ(x) =∞ for x≥R.

Define Λx = Λ̃σ(x) for x > 0 and

Zx =

{
Z̃σ(x) if x <R

0 if x≥R.

Then R = inf{x ≥ 0 : Λx = 0} and x 7→ Λx is continuously differentiable on [0,∞) with
derivative Λ̇x = Zx(Λx)2/3 for x≥ 0, where we take the right-hand derivative at x= 0.
(c) By enlarging our probability space, if necessary, we may assume there is a filtration
(Gx)x≥0 and a (Gx)-Brownian motion (Bx)x≥0 such that (Λx, Λ̇x)x≥0 is the (Gx)-adapted
solution of (1), stopped at R.
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