Math 302 Assignment 5
This assignment is due on Wed. October 26.

1. In each of the following cases, compute $P(0 < X < 2)$ where the random variable X has the given probability density function.
 (a)
 \[f(x) = \begin{cases}
 x^{-2}, & \text{if } x \geq 1, \\
 0, & \text{if } x < 1.
 \end{cases} \]
 (b)
 \[f(x) = \begin{cases}
 7e^{-7x}, & \text{if } x \geq 0, \\
 0, & \text{if } x < 0.
 \end{cases} \]

2. Suppose that the random variable X has probability density function
 \[f(x) = \begin{cases}
 \frac{1}{8}x, & \text{if } 0 \leq x \leq 4, \\
 0, & \text{otherwise}.
 \end{cases} \]
 (a) Determine the value of a such that $P(X \leq a) = \frac{1}{2}$.
 (b) Determine the value of a such that $P(X \geq a) = \frac{1}{4}$.

3. Assume X has probability density function
 \[f(x) = \begin{cases}
 cx^4, & \text{if } 0 < x < a \\
 0, & \text{otherwise},
 \end{cases} \]
 for some positive constants c and a. If $E(X) = 1$, find $Var(X)$.

4. An electronic system consists of 5 components which operate independently. The lifetime (in years) of each component is an exponential r.v. with parameter $\lambda = \frac{1}{2}$.
 (a) If N is the number of components still operating after 4 years, find the expectation of N.
 (b) The system will work as long as at least two of the components are still functioning. Find $P($system will still be working in 4 years$)$.

5. (a) For each of the following r.v.'s X calculate the function $F(x) = P(X \leq x)$ and then graph $y = F(x)$.
 (i) X uniform on $(0, 10)$.
 (ii) X exponential, $\lambda = 3$.
 (iii) X Binomial $(n = 5, p = .5)$.
 (b) In each of the above cases, verify by direct calculation that
 \[E(X) = \int_0^\infty P(X > x) \, dx. \]

Here are some practice problems not to be handed in, but try them before the second midterm.

p. 229-230 # 5.1, 5.2, 5.7
p. 224-225 #5.5, 5.7, 5.10, 5.14 (just use Proposition 2.1 (LUS)).