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Summary

Necessary and sufficient conditions are found on a mean-zero
probability, p, for the existence of a stopping time, T, and a Brownian
motion, B, such that BT has law p and B; is integrable. This result, due to
Burgess Davis (the classical analogue was first solved by O. D. Ceretels ),
leads naturally to a stopping time, T, that stochastically minimizes both

supsi? Bsand -lnfsﬁst'



1. Introduction.

Consider a mean-zero probability on the line, p, and a one-dimensional
{Ft}-Browniaﬁ motion, B, defined on some (Q,F.Ft,P) and satisfying By = 0.
An {Ft}-stopping time, T, is an embedding of p if B(T A t) is a uniformly
integrable martingale such that L(BT) =y (L(Z) denotes the law of the r.v.
Z). T is an HP-embedding if, in addition, Bt = sup{[B_| : 5 <7} is in tP.
The existence of an embedding is due to Skorokhod (1965). A particularly
explicit one is described in Az&ma-Yor (1978 a,b). If p > 1, Doob's strong
t®? inequalties show that an HP-embedding of p exists iff [|x|Pau(x) < = iff
every embedding of p is an Hp-embedding, and, if p < 1, Doob's weak L1 ‘
inequality shows that every embedding is an Hp-embedding. The situation for
p = 1 is more delicate. It is well-known that there are laws p for which
some embeddings are H1-embeddings and some are not (eg. compare Proposition
2.1 below with Theorem 2.2 of Azéma-Yor (1978 b)). A natural question, which

I learned from John Walsh, is therefore:

(1.1) Problem. Find necessary and sufficient conditions on p for it to have

an H1-embedding.

Doob's LlogL inequality shows that J|x| log®|x|au(x) < ®

(log+x = max{log x,0)) is sufficient for every embedding to be an
H1-embedding and by using optional stopping it is easy to see that it is also
necessary if supp(p) (supp(p) = support of p) is bounded below or above. It
is simple enough to obtain better sufficient conditions by doing some

computations with one's favourite embedding, providing of course it is an

embedding that allows one to compute such things as P(sup Bs 2 MX). This is
s<T

done in the beginning of section 2, where we adopt the Skorohod embedding as




-2 -
our favorite embedding (it will be until section 3) and arrive at a
sufficient condition due to Walsh (2.5).

Getting necessary conditions seems harder as there are a lot of
embeddings to check. 1In fact, a complete solution to (1.1) already exists in
the literature. As this seems to have escaped the notice of many
probabilists, and as the history of the subject is complicated by the close
connection between classical Hp-theory and probability, shown by Burkholder,
Gundy and Silverstein (1971), a short historical account is in order.

Let 3D be the unit circle in the complex plane. If f is an integrable,
real-valued function on 3D, let T denote the conjugate function of f, and
write £ € Re H1(6D) if T is integrable on 3D. The space Re H1(6D) can be
considered as a subspace of the H1-embedding stopping times and furthermore
the spaces Re H1(Rn), n > 1, are less closely, but still strongly, connected
to these times (see Davis (1980) for the necessary definitions and
motivation). The analogue of (1.1) for Re H1(bD) was first answered
completely by O. D. Cereteli in a series of papers (see Ceretel: (1976)).
He gives a condition on the distribution of an integrable function, f, on 3D,
that is necessary and sufficient for the existence of a rearrangement (of f)
that belongs to Re H1(6D). We learned of Cerete;vi's work from Burgess
Davis, who used probability to give a different (but of course equivalent)
necessary and sufficient condition in Davis (1980). (He was unaware of
Cereteléi's work at that time.) From a classical viewpoint the contribution
of this part of Davis' paper is that the natural extension of his condition
to functions on R was shown to characterize the distributions of functions

1 . oy . .
in Re H (Rp), whereas Ceretelli's condition did not extend to this setting.
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For the probabilistic question (1.1) we are studying in this paper, the
answer follows immediately from the probabilistic arguments in Davis (1980),
as is pointed. out on p.218 of that work, and the characterization is the same
as in the classical unit circle setting. However, Davis tells me that, "Any
probabilist knowing Cerete{Ji's work, as well as the results of Burkholder,
Gundy and Silverstein, would have been able to answer (1.1)."

In section 2 we follow Davis' proof of necessity and show his condition
is equivalent to Ceretel .i's condition and Walsh's sufficient condition. The
main result of this section is stated as Theorem 2.7. This approach to the
Cerete1;i-Davis theorem has the advantage of showing that if an H1-embedding
of p exists, then the Skorokhod embedding will be such an embedding , a
result we found a little surprising.

Davis' proof of necessity leads naturally to the definition of an
explicit extremal embedding of p, much in the spirit of Az&ma-Yor (1978a),
that stochastically minimizes both sups<TB(s) and -infs<TB(s) over all
embeddings T (Theorems 3.7, 3.8). This construction is carried out in
section 3.

Throughout this work X denotes a random variable with the fixed law, y,

and if Yt is a real-valued process,

inf{t > 0: ¥ > A} if X >0
T,(\) = (inf ¢ = =),
inf{t > 0: Y <A} if XA <O

We write kn 44 A to denote that {kn} is strictly increasing to A.
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2. The Ceretel/ ~Davis Solution to the H1-embeddingfprob1em

We start by obtaining sufficient conditions for the existence of an
H1-embedding2 Assume first that g is atomless so that there is an explicit

description of the Skorokhod embedding.

Definition. If A > 0, let

-p(A) = inf{y: [I(x <y or x > N)xdu(x) < 0},

It is easy to see that p(A) = 4= iff p[A,») = 0 and p: [0,») + [0,=] is
non~-decreasing and right-continucus. One can also show that
(2.1) pi-A,0] = [ 1(0 < x, p(x) ik)xp(x)-1 ap(x).
If u has a smooth, strictly positive density this is an easy calculus
arqgqument and the technical problems one faces in general are uninteresting
and easily overcome. Let R > 0 be independent of B and have distribution
function

P(R < x) = J'I(yg x)(1 + yp(y)'1)dp(y)-

The right side defines a probability by (2.1). If
(2.2) T_ = inf{t: B_ ¢ (-p(R),R)},
then Ts is an embedding of H. This is essentially the embedding studied in
Skorokhod (1965). Although f xzdu(x) < » is assumed there, it is an easy
exercise to check that B(t A Ts) is uwniformly integrable without this

condition.

[- ] @
Notation. M_ = sup B , m_= -inf B , H(p) = f K-1| f x I(|x| > k)du(x)ldl.
—_— t s t s -
s<t s<t 0

-—Ch
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Proposition 2.1. Assume p is a mean-zero, atomless probability on the line

and Ts is given by (2.2).

- .
(a) E(M(T))) = ,(f) (x + p(x)) log(1 + —Ts

Em(r ) = [ (x + p(x)x p(x) '1og(1 + B4y ()
0

Yap (x)

- -] - -] x
(b) E(M(T )+ m(T)) < 2(_i Ix]ap(x) + { x|log p(x)ldu(x))
= 2( [ |x|ap(x) + H(u)).
0
< X
Proof. (a) P(M(T ) > A) = { P(M(T ) > AR = x) (1 + p(x))dp(x)

- < (x) x
{ —f’————-Mp(x) (1 + p(x))dp(x)

A E(M(Ts)) =

o—8

< x+p (x)
{ —-°—-Mp(x) ap (x)ar

= [ (x + p(x))log(1 +

x
: p(x))du(x).

A similar argument gives the required expression for E(m(Ts)).

(b) Use the inequalities log(1 + y) < y and log(1 + y) < 1 + |log yl for

all y > 0, to see that

< X e X

(j) (x + p(x)) log(1 + ==)du(x) + {) (x + p(x)) ==
< f x(1 + llog X Iy + x ap(x) + f x + x(1 + |log(&—(X))|)d\u(x)
- 0 p{x) 0 x

X
0 lau(x)),

20 [ Ixlanc + [ x|10g —

and hence obtain the first inequality in (b).

Let )‘n 44 A and take limits in

(x)

log(1 + E—:—)dp(x)
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[ x 1(x 5_-p(kn) or x 3_ln)dp(x) =0
to see that
[ x I(x < -p(A=) or x > Mdu(x) = 0.
As the same equation holds with p(A) in place of p(A~), it must be that
(2.3) pl-p(\), =p(A-)] = 0 for each A > 0.
In particular, if p-1(x) denotes the right-continuous inverse of p, then
-A 5_-p(p-1(k)-) and so u[-p(p-1(X)). - A] = 0. It follows that
[ x I(x < A or x > p  (AaR(x) = [ x I(x < =p(p (M) or x > p_ (A))du(x)
= 0,
and therefore
(2.4) |f xI(x < =X\ or x > Map(x)| = [ xT(A A o T <X <AV o~ A ddu(x).
An argument similar to that used to show (2.3) gives us plr,s] = 0 whenever
r < s satisfy p(r) = p(s). This implies that p does not charge the "flat
spots” of p and hence that p-1(p(x)) = x for py-a.a. x > 0.
This gives us
p-1(l) < x <=> A < p(x) for p-a.a. x >0

and hence, by (2.4),
I x Ttx < = or x> Map(x)] = [ x I(x Ap(x) <A < p(x) vx)du(x).
0

It follows that

® xvp(x)_1 ® x
Hp) = f/ [ AT'ax x dp(x) = [ x|log (x)|dp(x)
0 xAp(x) 0 P

and the proof is complete. D

As an immediate corollary we see that, when p is atomless, either of the

two equivalent conditions
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-
(2.5) £ x|log p(:)ldp(x) < w
or _
(2.6) H(p) < »

is sufficient for the existence of an H1-embedding, namely Ts' These
conditions are symmetry conditions on the tails of pu. Both conditions hold
if 4 is symmetric (the integrals are zero) and are equivalent to
f|x|10g+|x|dp(x) < = if supp(p) is bounded above or below. (2.6) appears in
Ceretell (1976), and also in Vallois (1982). (2.5) was shown by Walsh
(private communication) to be necessary and sufficient for

E(B*(Ts)) < » and led him to make the

(2.7) Conjecture. (2.5) is necessary and sufficient for the existence of an

1
H -embedding of the atomless measure u.

The necessity of (2.7) is not at all obvious, since Ts is in no way an
"optimal embedding”.

Our immediate task is to extend these results to the case when y may
have atoms. It will be easier to work with (2.6) than (2.5). Let an denote

11
the uniform law on [- —,—=], ¢ = a #u (* denotes convolution) and T denote
n'n n n s,n

the Skorokhod embedding of oo Then there are random variables
(Un,vn) € (=»,0] x [0,»), independent of B such that

T = inf{t > 0: B ¢ (U ,V )}.
s,n - t n n

’
By changing the underlying probability space we may assume there is a

Ae«Se
->

subsequence such that (U_ ,V_ ) (Uu,v) € [~,0] x [0,»], where

k k
{un Vo k€ N} is independent of the Brownian motion B (Skorokhod (1965,
k k
Ch.1.6)). It follows that
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a.,5. -
T "= inf{t > O: B, ¢ (U,V)} < =,

Note also that

- + *
P(T_ 2K) <P(T, ~>X, Bf < M) +P(BX >M)

§.m f 8,n s,n
-1
< P(BEC M) +M !:(Ila,r h
8,N
- - -1
<@ cu ) e w(Jlxlauoo + 2.

The last line may be made arbitrarily small, uniformly in n, by first
choosing M and then K large enough. Therefore Ts < ®» a.s. and so

B(T y2$5° B(T ). This implies L(B(T_)) = u. Moreover we have
s.n, s s

lim E|B(T )| = 1im f]x|ap_ (x) = E(|B(T ) ]).
ko s,nk ko nk 8

This clearly shows B(Ts A t) is uniformly integrable and hence T8 is an
embedding of u, which we call the Skorokhod embedding of u (although, given

this nebulous procedure, "the" may be rather strong language).

Theorem 2.2. Let U be a mean-zero probability on the line and let Ts be

defined as above. Then

EM, +m ) < 2(f]x|ap(x) + B,
5 ]

and in particular H(p) < = implies Ts is an H‘-embeddiqg of p.

Proof. Recall X denotes a r.v. with law u. Let Un be independent of X and

have law a , and let X = X + U . ‘Then
n n n

| I e adx | 2wl - lzazdx] 2 a0 hax
1
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(]

A TNEx x| 2 A - B xx] 2 A0 |a

2 e TR(x | 2 0+ [Eazdx] > A - 1lx | > Mnha

in-1E(109+|xn|) + [
1

E(|x]z(]x-A] in'1 or |x+\| in-1))dx

- +
<n 1(E(log Ixnl) +4E|Xx|)+0 . asn+w,
Note also that

1 1
lim | A"IE(xnI(Ixnl >anjan = A e 1] x] > A |an
n*» 0 0

because the integrands converge for Lebesgue-a.a. A and are bounded by one
(recall E(xn) = 0). We have shown that

(2.8) lim H(p ) = H(u).
neeo n
Let {nk} be the subsequence used to construct Ts' Then

E(M(T ) + m(T )) < lim inf E(M(T ) + m(T )) (Fatou's lemma)
s s - 8,n 8,n
k= k k

< 1lim inf 2( [ |x|ap_ (x) + H(p_ )
ko -0 nk nk

(Proposition 2.1 (b))

= 2( [ |x|dap(x) + H(u)) (by (2.8)).0

1 .
To find necessary conditions for the existence of an H -embedding

introduce the

Notation. =-ga = - = inf supp(p), B = Bu = sup supp(i)

sup{y: E(X|X <y or X > ) > A} if P(X > A) > 0
-, M) = b =
-a otherwise

= sup{y:f(x - M)I(x <y or x > A)du(x) > 0}(sup @§= -a,A > 0)
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inf{y: E(X|X < =\ or X > y) < =A} if P(X < =A) > 0

y_ =y o
B otherwise

inf{y: [(x + A\)I(x < =A or x > y) < O} (inf g= B, A > 0)

J x T(x > yydu(x)/uly,) if ply,=) > 0
(y) =

Y if ply,») =0
¢(\) = inf{y:d(y) > A} (A > 0)

pl==,x] = pl=-x,=).

Hence ¢ is the increasing left-continuous inverse of the increasing,
ieft-continuous barycentre function ¢ (see Azéma-Yor (1978a)). Yy, are
increasing left-continuous functions from [0,») to [0,®]. These and other
properties of y, will be discussed in the next section (Lemma 3.2). For now,

‘we will need the following results, which follow easily from the

definitions:
(2.9) Jx = MI(x > 6(A)) au(x) <0 < [(x = MI(x > ¢(A))dp(x)
(2.10) Jix = Myz(x L =y, (M) or x > Mdu(x)

<0 S_I(x = AMI(x < =y (A) or x > A)dp(x)
(2.1 [(x + MI(x € =\ or x > y_(A))au(x)

<0 < f(x +MI(x <=k or x > y_(A))du(x).

(2.12) yu = yﬁ

Notation. If A > 0, let

[ (x ~MIx > 60ONa(x) (A = 6N 1f 6(A) < A

p({e)}) if ¢(N) = A

p(A) =

q, (M) = [ (x = MI(x < = v, (M) or x > Map(x)(y, () + A)

a_ (M) = [ (x+ M)I(x < - or x > y_(A))ap(x) (y_(A) + A



- 11 =
B*(A) = u(d(N),=) + p(\)
p+(7\) = (=, ‘Y+(7\)) + q+()\) + pulh,=)

B_(M) = py_(N), =) + g_(A) + p(=~=,=A].

Lemma 2.3. (2.13) 0 < p(A) < p({6(\)})
(2.14) 0 < q (W) < pi{=y, })

(2.15) 0 < q_(\) <p({y_0})

(2.16) ") = qu. b=,
M. (2.9) implies that

0 < f(x = MI(x > 6(A)Nap(x) < (A = 6ANp({eM))).
Divide the above by A = ¢(A) to obtain (2.13). Similarly one can use (2.10)

and (2.11) to prove (2.14) and (2.15). (2.16) is an easy consequence of

(2.12).0

The key idea in the derivation of necessary conditions for the existence
of an H1—embedding is

Lemma 2.4 (Davis' Law of the Lever). Assume [(X) = u, A > 0O and A is a

measurable set such that {X > A} c A.

(a) (i) If [ X = A\ AP > 0, then
A

(2.17) P(A) < pu*(A).

(ii) 1If, in addition, egquality holds in (2.17), then

(2.18) {x > ¢} cac {xX> 6N} a.s.

(iii) Conversely if (2.18) holds and [ X = A dP = 0 then P(AR) = p¥%(\).
A

(b) (i) If [ X - A @ < 0, then
A

(2.19) P(R) > p (V).
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(ii) If, in addition, equality holds in (2.19), then

(2.20) {x < -y+(k) or X > A} <A €< {x $-Y+(k) or X > )} a.s.

(iii) Conversely if (2.20) holds and f X - AdP = 0, then P(A) = u+(h).
A

Remark. (2.17) was observed in Blackwell-Dubins (1963). The idea of (b)
appears in Davis (1980, p.215, 1982, p.157).

These results are intuitively obvious. Sand is distributed along a
see-saw according to p. The fulcrum is at A and sand is initially added to
ghe right of A. (a) says that if we want to add the maximum amount of sand
without tipping the see~saw to the left, we should add it as close as
possible to the fulcrum. (b) says that if we want to add the minimum amount
of sand needed to tip the see-saw to the left or at least put it in
egquilibrium, we should add it as far from the fulcrum as possible. Although
a proof is clearly not needed, we include a derivation of (b) because of its
importance in what follows.

Proof of (b). The definition of q+(X) gives us

[x-xap c0=[1(x <~y (A) or X 2N (X = A& = (y () + A)g (A)
A

and therefore
(2.21) [ (A, =y, <X <X = MaP ¢ [ TS, X < = y (A))(X - A)ap
- (Y+(k) + k)q+(K).
This implies that
(2.22) (- y+(k) - A)P(A, -y+()\) < X <)) < LHS of (2.21)
< RHS of (2.21) < (-y+(>\)-x)[p(A°, X<y, (M) + g, (M)].
If y+(K) = o, (2.19) is trivial. Assuming Y+(k) < », we may divide the above

by -Y+(K) - A and then add P(A, X < -y+(k)) + P(X > A) to both sides to
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complete the proof of (2.19).

If P(A) = p+(k), then reversing the final steps in the above argument,
we see that the extreme left and right sides of (2.22) are equal. This means
that

[ 1, -y, ) <x <) (=y,(A) = \)ap

= [1(a, - y,(\) <X <M)(X = N)ap

= f1(a%, X < =y, OO (X = Map = (v, () + Mg, ()

= [ 1% X <=y, ) (=Y, 00)-1) @ - (v, (M) + Mg, (\).
The last equality implies that P(a%, % < -Y+(k)) = 0 and hence the first
inclusion in (2.20) holds. The first equality shows that
P(A, -y+(k) < X <) = 0 and hence the second inclusion in (2.20) holds.

Finally note that, under the hypotheses of (iii), if
A EA- {x < -y, (\) or x > A}

then A, © {x = -y+(k)} and so

0=/ (X -2Nap = [I(X < =Y, (M) or X > \)dP - (v _(A) + AIP(A,).
A

Solve for P(Ak) to get P(Ak) = q+(k) and therefore P(A) = p+(k).D

Theorem 2.5. Assume {xt: t > 0} is a uniformly integrable (right-continuous)

martingale such that L(xc) = .

(a) (Blackwell-Dubins (1963)). For all A > O,

(2.23) P(sup X, > A) < u*(A).
t t= - 4

If equality holds in (2.23) then

(2.24) {xo > (M)} < {sup xt >\ c {xm > 6(\)} a.s.
t

Conversely if xt is a.s. continuous, xo = 0 and (2.24) holds, then equality 1
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holds in (2.23).

(b) (Davis) Assume, in addition that Xt is a.s. continuous and

Xo = 0.

Then for all A > 0,

(2.25) P(sup X_ > A) > u (A)
t
(2.26) P(-inf X_>N) > p_(M).

Equality holds in (2.25) (respectively, (2.26)) iff

(2.27) {x_ < =y (A) or X_ > A} € {sup X

2A e {x < =Y, (\) or X > A} a.s.
t

t

(respectively,

(2.28) {X_ < -k or X >y (M}c{~inf X > AN S{X <-Aor X >y ()} as.)
t

Remark. It is not hard to show that the right side of (2.23) equals p[A,=)
where | is the distribution of the Hardy-Littlewood maximal function
associated with p (see eg. Dubins-Gilat (1978)). Thus (2.23) really is
Theorem 3(a) of Blackwell-Dubins (1963) (see alsc Theorem 1 of Dubins-Gilat
(1978)).

Proof. (b) The optional stopping theorem shows that for A > 0,

I T(X(T, (X)) > A (X =~ N)aP = { T(X(T (M) > A) (X(T, (X)) - A)&P = 0.
Apply Lemma 2.4(b) with A = {x(Tx(k)) 2 A} and X = X_ to obtain (2.25), and
the equivalence between (2.27) and equality holding (2.25). The rest of (b)
is obtained by replacing X with =X and p with I (use (2.12) and (2.16)
here).

(a) Use Lemma 2.4(a) as above. In this case the possibility of jumps
as well as X_exceeding A means that

0
[ 1ax(r, () 2 2) (X(T,(A)) - A)ap > 0.
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Therefore continuity of X and xo = 0 is needed for the last statement in

(a). D

By integrating out (2.25) and (2.26) we see that a necessary condition

1
for the existence of an H -embedding of p is

J e 00 +p_ar <=
0

It remains to show that this is egquivalent to our earlier sufficient

condition, H(p) < =.

Lemma 2.6.

(2.29) H(p) < 2 B, M)+ p_(Mar
0
(2.30a) J e e ¢ [ [xlaex) + H(R)
0 -0
(2.30b) Ju_ovan < |xlapx) + v
0 -0

Proof. Fix A > 0 and note that
(2.31) [ I(x ¢ =y, (A\) or x > A) (x = \) du(x) = (A + vy _(A\))g (\) = 0.

case 1. \ > 'v+(7\)

J oxx(|x] > Mapx) = [ xx(]x| > Map(x) - (2.31)

- [ xI(=A < x < =y (ADap(x) + v (Mg (M) + p (0)

-0

=> u, () ix"l J x I(]x| > Mau(x)] (by (2.14))

o ¥, (N)
(2.32) < 1 ox <oy, nau) + +x q (M) + () < 2u ().

A
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case 2. A > y_(A).

Replace y with E in the above to get
’ (-]
(2.33) p_(\) <A | [ x 2(]x] > Mapx)] <L 2u_(\).
case 3. A £_y+(k) and A < y_(A)

- -] [- 4
J xx(]x| > A) apx) = [ x T(]x] > Map(x) - (2.31)

= L x T(=y (A) < x < ~M)aulx) + y (Mg (W) + X p ()

< x Ty, ) < x < =Mdu(x) + A (A)  (by (2.14)).

5_ku+(k).
By symmetry we may conclude that
Ap_00) < [ x1elx] 2 Mdpx) <A p )

(2.34) AAT]  xxddx] 2 M ] € )+ p_0).

(2.29) follows by using the upperbounds on X-1|f xI(|x] Z_X)du(x)l in
(2.32), (2.33), (2.34) and then integrating out A.

For (2.30a) note that if A 5.Y+(k) then (2.14) shows that
(2.35) () <ut{|x] >}
This, together with the first inequality in (2.32) gives (2.30a) upon

integrating. Replace p with a to get (2.30b) from (2.30a).0

It is now an easy matter to prove the main result of this section.
Recall the definitions of H(p) and p, (X) given prior to Proposition 2.1 and

Lemma 2.3, respectively.
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Theorem 2.7. Let U be a mean-zero probability on the line and Ts be the
Skorokhod embedding of u. The following are equivalent:

(a) There exists an H‘-embedding of p.

(b) Ts is an H‘-embedding of u.

(c) H(u) < =

@ [p ) +p_ ) <o
0

Proof. (d4) <=> (c) Lemma 2.6
(c) => (b) Theorem 2.2
(b) => (a) obvious

(a) => (4) Theorem 2.4 (b). O

Remarks. 1. In particular the equivalence of (2.5) and (d) in the atomless
case (Prop. 2.1(b)) shows that Walsh's conjecture (2.7) is true.

2. It is a little surprising <that if an H1-embedding of 4 exists then
'1‘s must be an H1-embedding. Clearly there must be other embeddings with this
property. Vallois (1982) describes an interesting embedding, Tv' that uses
local time, and shows if u{0} = 0, it is an H1-embedding iff(c) holds in the
above (Vallois (1982, Prop. 4.23)). The filling scheme, Tc, has been studied
extensively (see eg. Rost (1971), Baxter [3]) and is known to minimize E(/T)
over all embeddings of p (see P. Chacon (1985)). Davis' inequality shows
that if an H1-embedding exists then Tc is such an embedding. 1Indeed, this

suggested a direct method of attack on the original problem, namely find
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NASC on p for E(B; ) ¢ ®», Unfortunately, the £illing scheme does not seem to
c

lend itself to such explicit calculations.

3. An Optimal Embedding

How should one define an embedding of §, T, that minimizes B;, AT or mT?

Theorem 2.5 tells us how one might hope to define such a T. To illustrate

the idea let us first try to maximize MT. According to Theorem 2.5(a),
P(Mﬁ > A) < u*(\), and, if egquality holds, T must satisfy
> < c .
{, > 6} c{n 22} <{B > 600}
The left-continuity of ¢ now implies
(b(BT) > A => B, > ¢(N\) => M, > A
Let \ 4 w(BT) to conclude that M 3_¢(BT). This suggests the

T

Definition. T = inf{t > 0: M_> ¢(B )} (inf ¢ = =).

Only an optimist would expect '1'a to be an embedding of p. In fact it is
precisely the embedding studied by Az&ma and Yor (1978a,b). The point of
this digression is that Theorem 2.5 provides a natural route to their
stopping time. Moreover, it is now easy to show that Ta stochastically

maximizes MT over all embeddings T, as was observed in Azéma-Yor (1978b).

Theorem 3.1.
(3.1) P(M(Ta) 2 A) = p*(\) for all A\ > 0.

If {xt: t 3_0} is a uniformly integrable (right~continuous) martingale

such that L(xw) = |, then

P(sup X > A) < P(M(T ) > \) for all A > 0.
+ t — - a - -
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Proof. We first show that
(3.2) - ¢(B(T )) < M(T ).
a ' — a
If (3.2) fails there must at least exist a sequence tn ++ '1‘a such that
$(B(t )) < M(t ). Choose u € (Ta'tn] such that B(u ) < min(B(T,), B(t ))

(if B(tn) i_B(Ta), let u = tn)' Then ¢(Bun) 5_M(tn) and B(un) S.B(Ta)' 8o,

letting n + = in the first inequality, we get (3.2) by the left-continuity of
¢. It follows that for each A > O,

(3.3) {B(Ta) > ¢} < {m(T)) > A}

The definition of T  allows one to conclude {B(Ta) < 6(\)} € {M(Ta) < A} and
hence for each A > 0O,

(3.4) {m(r ) 2 A} = {B(T) > 601}

(3.3) and (3.4) allow us to apply Theorem 2.5 (a) with X = B(Ta) and

A= {M(Ta) 2 A} and conclude that (3.1) holds. The rest of the result is

then immediate from the Blackwell=Dubins theorem (Theorem 2.5(a)).O

To stochastically minimize MT, use Theorem 2.5(b) to show that if
P(MT 2N = p+(k), then T must satisfy
(3.5) {By <=y, (\) or B > A} = {M > A} <{B <~y (A) or B >A}.

Using the latter inclusion and letting A = MT, we see that

3.6 B <O h < - M.
( ) if - + then BT <=y ( T)
To simultaneously minimize Mme we see in the same way that T should also
satisfy
.7 > h .
(3.7) if BT 0, then QT z_y_(mT)

(3.6) and (3.7) together suggest the
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Definition. T, = inf{t > 0: B, ¢ (-y+(Mt), y_(mt))} (inf @ = =),

There is a slight problem with this definition. If By = O + (1-a)6o

B
(0 <a < 1), then it is easy to see that Y+a = yf and hence Td would be the

same for all of these laws. To handle atoms at zero we may, and shall,
assume our probability space is rich enough to support a r.v., U, uniformly

distributed on (0,1] and independent of B, and make the

T, if U> u{o})
Definition. T = .

b 0 if u < u({oh

We sometimes write Tt or Tg to denote the dependence on .

The optimality properties of Tb are fairly easy to show, once one knows

that Tb is an embedding of pu. For this we need some further properties of

Y+.

Lemma 3.2. (a) Y, and y_ are non-decreasing, left~continuous functions from

[0,=) to [0,a] and [0,B], respectively.

{b) A < B => y+(k) <=, A >B = Y+(X) =
A <Ca => Y_(X) <o, A>a =y (A) =8
(e} y,(A) >0 4if A > 0.
(@) 1f a, b >0, a+ b >0, vy (b) < a, and y_(a) < b, then

p(l-a,p)) = o.
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Proof. By replacing g with E, it suffices to consider Y,
(a) It is clear from the definition that Y, is non-decreasing and takes
values in [0,a). If kn 4 A and vy > -y+(k), then

0> [ (x = \)I(x £y or x> Adu(x) = lim J (x - kn)I(x £ yorx 3_kn)du(x),
nee

and so for large enough n we have y 3_-y+(kn). This shows that
-Y+(k) 3_limn*°-y+(kn). As the opposite inequality is obvious by
monotonicity, we see that Y, is left continuous.

(b) If A < B, then

lim Jix = M)I(x <y or x > Mau(x) = [(x = \)I(x > N)du(x) > 0

y-)—a:

and hence -Y+(k) >, If A >P and y > -a then
Jix = MI(x <y or x > Mdu(x) = [(x = A)I(x < y)du(x) < 0
and so -y+(k) = -q.
(c) If A > 0, then

1im f(x = A)I(x < =€ or x > Mdp(x) = [ (x = A\)I(x < 0 or x > A)du(x)
e+ 0+

< -\ p(-=,0) < O.
Thus the integral on the left is negative for & small enough and for such an
e, Y,(A) > e > 0.
(a) y+(b) < a and y_(a) < b, together with (2.10) and (2.11) give

f I(x < =aor x> b)(x + a)du(x) <0

J T(x < -a or x > b)(x - blap(x) > O.
Subtracting, we get

(a + b) p(l-a,b]°) < 0,

and hence the result.D
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Notation. Let o, (y) = ar(y) denote the left-continuous inverse of Yoo i.e.,

o, (y) = inf{X 2 O:y,(A) 2 v}  (inf ¢ = +=).

Lemma 3.3. (a) y < a => o+(y) <o,y <f =0 (y) <=
(b) 0, (0+) =0
(e) (3.8) [ I(x ¢ =y or x > 6 (y))(x - 0, (y))du(x) = 0 (0 + (-=) = 0)
(3.9) [ I(x < ~o_(y) or x > ¥) (x + o_(y))du(x) = 0 (0 @ = 0)

(d) o_(o (s)) < s for all s in [0,a].

Proof. As usual, it guffices to consider o, .
(a) If y < a, then

lim f(x - AMI(x < =y or x > A)du(x) = -=,
A+ 4o

Therefore -Y+(l) < =y for \ large enough, whence U+(Y) < o,
(b) is immediate from Lemma 3.2(b).
{c) If N ¢ a+(Y), then y+(k) < y and so (2.10) shows that
Jx = MI(x < =y or x > M)du(x) > 0 .
Let A ¢ U+(Y) £ =®, to get
[ (x - 6, (Y)I(x < =y or x > 0 (y))du(x) > 0 (==+0 = 0).
If c+(y) = ®», the above integrand is (==)I(x < -y) < 0 so that the integral
must be zero. Assume therefore that c+(y) <o and let \ > d+(Y)- Then
‘y+()\) > vy and so
J (x = MI(x < =y or x > A\)du(x) < 0 (by (2.10)).
Let A\ ¥ c+(y) to get
[ (x - o (Y)I(x < =y or x > o, (y))du(x) < O.

This, together with the above converse inequality, proves {c).
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(d) would follow from
(3.10) Y, vy_(8)) > 8 for 0 < 8 < a.
If 0 < 8 < a and y+(y_(s)) & s, then Lemma 3.2(d) with a = g and b = y_(s)
It is

shows that s > a, a contradiction. This proves (3.10) for 0 < s < a.

trivial for s = 0 and holds for s = a by left-continuity.D

Y 0
Notation. G(x) = p(-=,x], K(y) = f (1 - G(x))dx, H(y) = f G(x)dx,
0 =Y
1 -1
£,(8) = exp{ [ (s + c,(s)) ds} (t > 0).

t

= lim yf+(y) exists and satisfies 0 < c, < 1.
v>0+ -

Proposition 3.4. (a) c,

(b) (H,K) satisfies the integral equations

Y
-1 -1
(3.11) H(Y) = ¢,G(0-)f (y) + £ K(o, (s))af (s) £ (y) , y 20

Y -
(3.12)  X(y) = c_(1 = GIONE_(y) + [ H(o_(sNaf_(s) £_(x)"', vy > 0.
0

Proof. As H and f_ are constant on {y: o (y) = o}, it suffices to consider

(3.11) for 0 < vy such that c+(y) < o,

Integrate (3.8) by parts to see that for y as above,

(=y = 6, (Y))G(=v) = [ I(x < =y)G(x)ax = [ I(x > o (y))(G(x) =1)ax = 0

= (y + o+(y))-1( J x ac(x) - (o, (y)))

0
0

= G(-y) + (y + c+(y))-1(f -x dG(x) - H(y))

=0

- -1
=> = [y + o, (YD Ko, (¥)) = G(=y) = (y + o (y)) H(y)
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4.

(3.13) f;(y) K(o+(y)) = &y (Hf+)(y).
Note that
1 -1
Hf (v) < H(y) exp{ [ s~ ds} » G(0-) as vy ¢ 0.
Y
As Hf+(y) increases as y + 0 (by (3.13)), it follows that L, = limY*o+Hf+(y)

exists and belongs to (0, G(0-)]. We can now integrate (3.13) and conclude

that

y
(f) K(o,(s))af (s) = HE (y) = L,

for 0 < y such that o+(y) < = and hence for all vy > 0. To obtain (3.11),

simply note that
-1

lim v £,(y) = lim yH(Y) 'lim H(PE,(y) = 6(0-) 'L, = c, € (0,1].
Yy+0+ Y+0+ Y+0+ .
The rest of (a) and (3.12) follow upon replacing y with ;.D
u B

Proposition 3.5. If p1, u2 are mean-zero laws such that Y, =Y, and

u1({0}) = uz((O}), then u, = Boe

Proof. Let Gi(x) = ui(-r,x], define Hi and Ki as above but with Gi in place

By My By
of G, and write y,, o,, and f_ for vy, , 0, , and £, respectively (i = 1,2).

B By By By Hy
Note that a =Y, () and 8 = y_"(®), so we may write a and B for a and

o,
B 1, respectively. (3.11) and (3.12) become

- Y -
(3.14)i Hi(y) = c+Gi(0-)f+(y) Vs f Ki(c+(s))df+(s)f+(y) 1, Y>>0

o
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1 1

Y -
+ [ B (o_(sN)af_(s)f_(v) ', vy > 0.
0

Proposition 3.4(a), together with f_(u) z_u-1 1, shows there is a K > 0 such

(3.15),  K.(y) = c_(1 = G (0))f_(y)

that £_(u) z_x-1u-1for all u > 0. Therefore if €¢ < 1 < y, then we have

- Y -
{ £_(0,(s) 7 a(-£, () < K £ o,(8)f (8)(s + o (8)) 'I(0, (8) < =)ds
1
<Kk [o (s)(s2 + 80 (s))-11(c (8) < »)ds
- . + + +
Y -1
+ K { o (8) (s +0,(s))  I(o (s) < =)ds

y
< =K log(f (e)e) + K [ I(o.(8) < =)ds
- + 1 +

Y
+ =K log c, + K f I(c+(s) < =)ds as € + 0.
1

Therefore we may define continuous, non-decreasing functions on [0,®) by

Y -1
g, () = { £_(0,(u))  d(-f_(u))

and symmetrically,

Y -
g_(y) = [ £, (o_(u)'a(=£_(u)).
0

Substitute (3.15)i into (3.14)i to get

Y a+(s)
£V (v) = ¢,G (0-) + c_(G,(0) - g () + { ﬂ H,(o_(u))f (o_(u))

dg_(u)dg+(s).
Take differences and recall that AG1(0) = AGz(O) to see that

(3.16) f+(Y)(H1(Y) - Hz(Y)) = (G1(0) - GZ(O))(C+ + c_g+(Y))

Yy o,(s)

+ g / (8,(6_(u)) = Hy(o_(W))f_(o_(u))dg_(u)dg, (s).
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Assume G,(0) > G,(0). Then o_(o,(s)) < s for 8 < a (Lemma 3.3(d)) and
(3.16) show that H1(Y) > Hz(y) for vy < a and hence for all y > 0 because

Hi(y) = Hi(y Aa). Let y + += in (3.16) to see that

0 0
(3.17) [ =x ac,(x) = [ -x d6,(x) = H (=) = H,(=) > O.

-t -d

Take differences in (3.15)i to get

-1
(3.18) Kz(y) - K1(Y) = (G1(0) - GZ(O))c_f_(Y)

Y -1
+ [ (- B (e_(s))A(-£ ) (s)E_(Y) .

0
letting y + @, we obtain
- o™ 1
(3.19) [ xdG,(x) = [ xdG (x) > (G(0) = G,(0))c £ _(y) > 0.
0 0

Add (3.17) and (3.19) and conclude that f x d(Gz- G1)(x) > 0, contradicting

-

the fact that G1 and G2 have mean zero. Hence our original assumption was

false and we may conclude that G1(O) = Gz(O). (3.16) simplifies to

vy g,(s)
(3.20)f+(Y)(H1(Y)-H2(Y))=£ (f) (H,(0_(u))-H,(0_(u)))f (0_(u))dg_(u)dg ().

Proposition 3.4(a) shows that

M(u) sup f+(y)|H1(y) - Hz(y)l <®, for all u > 0,

0<y<u

and (3.20) implies

u
Mu) <[ Mlo_(o,(s)))g_(o,(5))dg (s)
0 L}
u
< g_(o, () f M(s)dg, (s) for u < a, by Lemma 3.3(d).
0
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An appropriate version of Gronwall's lemma shows that M(u) = 0 on
[0,a) < {Y:c+(y) < @} (Lemma 3.3(a)). Aas Hi(Y) = Hi(r A a), we have proved
H, = H_ and hence K_ = Kz by (3.18) and the fact that G1(0) = G2(0)°

1 2 1

Differentiate to see that G1 = GZ'D

=Y (M(T.)) = =-m(T ), . if B(T ) < O
Lemma 3.6. B(Tb) = + b b b a.s.
Y_(m(T,)) = M(T,), Af B(T,) 20

Proof. 1If Tb = 0, the result is obvious. By symmetry it suffices to

consider the case when B(Tb) < 0 and Tb > 0. By definition there are tn + Tb
such that B(tn) < —y+(M(tn)) and M(tn) = M(Tb) a.s. (the latter because
M(Tb) >0 lB(Tb) a.s.). Therefore B(tn) < -'y_'_(M(Tb)) and we can let n + ®
to see that B(Tb) < -y+(M(Tb)) a.s. If u, 44 Tb' then for a.a. w and large
enough n we have

B(un) > -'y+(M(un)) = -Y+(M(Tb)).
et n + = in the above to obtain B(Tb) > -Y+(M(Tb)). This proves
-y+(M(Tb) = B(Tb). If D < £t < Tb' then

B(t) > -Y+(Mt) > -Y+(M(Tb)) = B(Tb)'

and therefore B(Tb) = -m(Tb).D

Notation. & = &" = sup{x > 0: plo,x) = 0}.

-t =—¢" = inf{x < 0: p(x,0] = 0}
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Theorem 3.7. Tb is an embedding of u.

Proof. case 1. == < a < -€ <0 <H <P <w.

In this case -a < -y _(A) < -¢ and 6§ < y_(r) < B for A > 0 and hence
B(t A Tb) is uniformly bounded, 0 < Tb < =, and B(Tb) # 0 a.s. Let v denote
the law of B(Tb) and continue to write y_ _ for 1:’_'. We will use Proposition
3.5 to show v = 4. The previous lemma shows
(3.21)  {B(T,) 2 X or B(T,) < =y, (M)}

c {M(T) > A} e {B(T,) > X or B(T.) < =y, (M)} for all A > O,

which in turn implies

J TB(T) 2 % or B(T,) < =y, (\)) B(T_)aP > [ I(M(T_) > A) B(T,)dP

=\ P(M(Tb) > )\) (optional stopping)
'llewb)lkorBwy <w4un.
It follows immediately that y:(k) 5_y+(k) for all A > 0. If \ < Bv and
A' € (A,8"), then
L} -’
[ 1(B(T) > X' or B(T,) < -y, (\)) B(T )dP

<J Toamy) 20 B(T)EP - f T(M < B(T,) < A') B(T,)AP (by (3.21))

<A P(M(Tb) 2A) - X P(A 5-B(Tb) <AY)

<\ P(B(T,) 2 A or B(T,) < =y (M),
the last by (3.21) and the fact that A' < BV. This shows that for A, \' as
above, y:(K’) 3_Y+(K). First let A' ++ A and then take limits from below
(using the left continuity of y:, Y+) to see that Y:(k) Z_Y+(k) for A S_Bv.
We have therefore shown

v v
Y+(k) = Y+(X) for 0 <A < B <8

(the last inequality is clear because y_ < B), and symmetrically,
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yt(l) =y_(A) for 0 <X S.av < a.

In particular, y+(Bv) = y:(ﬂv) = o’ and y_(av) = y!(av) = Bv, results that
allow us to apply Lemma 3.2(d) and conclude that u([-av, ﬁv]c) = 0. This
means o' = a, Bv = 8 and hence y:(k) = y,(A) for all A > 0. &As

u({0}) = v({0}) = 0, Proposition 3.5 implies v = .

case 2. -= < a, B < =, u({0}) = 0.
Choose en ++ 0 and let Kh = p[-en,en],
m = ] I(-e < x <€ )x dp(x)/K_ (0/0 = 0).
Pick r in [0,1] such that m = r (=g ) + (1 = r )e and let
n n n n n""n

c
pn(A) = u([-en,en] NA) + xnrné_en(A) + xn(1 - rn)éen(A).

un is a mean-zero probability satistying the conditions of case 1.

"1 and 47 “n e T )) = 1f
p and v, for Yy ¢ then L[(B( n)) pn.

Therefore, if we write Tn for T
A2e and Y,(A) 2 € then
J 1(x L -e orx 2N (x - X)dpn(x) <0
and so
-yt(k) = sup{y < -€: [ 1(x £yor x>A) (x - X)dpn(x) > 0}
= supl{y < —e. ¢ f I(x <yor x >2A) (x = A) du(x) > 0}
==y, M) (0 ¥y, (M) 2 €).
By symmetry we have
n \
(3.22) yt(k) = yt(k) if A 2 €, and yi(l) 3_en.
Choose q, ++ 0 such that u[ﬁqn, qn] S_Z-n and then P, ++ 0 such that

-n
(3.23) P(max(T (p_), T (-p )) > 'rlBl(qn)) <2 .
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As vy, (A) > 0 if A > 0, (3.22) shows that we may choose {en} so that
n c
yi(K) = Yt(k) for A 2-pn and u = B, on [qqn,qn] .

This shows that

s n n
T; inf{t 3_max(TB(pn), TB(-pn)): Bt ¢ (-1+(Mt), Y_(mt))}

(3.24) = inf{t 2 max(T_(p ), To(-p_)): B, ¢ (v, (M), Y_(mt))},
and therefore
P(Tn # T;) S_P(Tn j_max(TB(pn), TB(-pn)))

-n
SR < Tple ) + 2 (by (3.23))

-n
Lu l=.,q)+2

-n -n+1
= + -
plg_,q ] +27" <2

The Borel-Cantelli lemma implies

(3.25) Tn = T; for large enough n a.s.

{3.24) shows that T; + T; 2-Tb a.s. let t ¢ (O,T;) and choose n large enough

so that max(TB(pn), TB(-pn)) < t. We must have Bt € (-y+(Mt), y_(mt))

because t < T;. This shows that T; £ T, and hence (3.25) shows that

b

' = L] . . i =
Tn > T T, a.s Therefore B(Tn) > B(Tb) a.s. This shows that‘L(B(Tb)) p

because L(B(Tn)) =B ¥ Be Ty is an embedding of u because B(Tb A t) is

bounded.

case 3. u({0}) = 0.

Let -an ¥4 -a (an > 0) and define

0 -
B, = inf{A > o: [ (=x) Ao dn(x) = [ x AN au(x)}

~ 0

Then 0 < Bn + 8, Bn < B and
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pn(A) Z pl-=, -anlaa (a) + pu(a n(-an,ﬁn)) + plﬁn,o)aﬂ (p).

n n

is a mean-zero probability with compact support. Therefore if we write Tn
Pn n Pn

for Tb and y, for y_ , then L(B(Tn)) - pn. An argument similar to that

given in case 2 shows that
(3.26) y:(k) =y, (\) if A <B_ andy () <a
(3.27) Y2 = y_(\) if A <a  and Y_(A) <B .
Note that since p and p.n are mean-zero laws that agree on (-an,ﬁn), one has
fI(x < -a_ or x > Bn) xdu(x) = f I(x < -a_ or x lﬁn)xdpn(x)

= -anp(-c,-an] + B P[ﬁn:")

<B (p(=,a 1 +piB ,)).
This shows that y (B ) > a  and hence Y ) >a ly:()\) for A > B or
Y,(\) > a_. Combine this with (3.26) to conclude that y_()) lyr_:()\) for all
A > 0. As y may be replaced by pn+1 in the definition of pn, this in fact

n+1

shows y iYi iYi and therefore Tn 4 T, £T. and Y: 4 Y: <v,- Fix

b - 't

+ 3

A > 0 and choose y > y:()\) such that p({~y}) = pn({-y}) = 0 for each n.
w

pn + u and

(3.28) I lxlcmn + [ |x|ap as n + =,

It follows that

J I(x < =y or x > M) (x = N)dp(x) = lim J I(x < =y or x > A\)(x - )\)dpn(x)

ns>o

® n
20 (y >y (A >y (A)).
Therefore vy Z_Y+(7\) and letting y ¢ y:()\) we see that Y:(M ly+()\). By

, n
symmetry we have shown that llmw yi()\) = yi()\) for all A > 0.
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We now show T£ <> a.s. If a or B is finite this is obvious because

Tb S_min(TB(-a), TB(ﬁ)). Assume therefore a = § = . (3.26) and (3.27) show

T, =T if M(T ) <B Ao (a)=a and m(T ) <a Ao (B)=Db. These
latter conditions are implied by
_bn v (-y+(an)) < B(Tn) < an A.Y-(bn)
(Lemma 3.6). Therefore
= - V -
P(Tb Tn) > P( bn ( Y+(an)) < B(Tn) < an A Y_(bn))

= pl(=y,(a ) v (-b ), vy_(b) A a)

+ 1 as n+ e
because g, (») = y (») =« if ¢ = § = ». The fact that Tn < ® for all n a.s.
now shows that T <« a.s., and hence 'I‘“° <@ a.s. also.

b

1f B(Tn) = Yf(mT ) for infinitely many n then, taking limits, we see
n

that B(Tﬂ) > 0 a.s. (recall P(Tn = 0) = 0 by case 2). Therefore if
B(To) < 0, Lemma 3.6 shows

B(T_) = lim - y,_(M(T_)) = =y (M(T_)).
naeo n

The last equality holds because Y: 4 Y, and the limit is left-continuous

(Lemma 3.2). This result, together with a similar conclusion if B(To) >0,
shows that Q’ z-Tb
L(B(Tn)) =u_, namely p. (3.28) implies that {B(Tn): n€ N}, and hence

. Therefore Th 4 Tb and so L(B(Tb)) is the weak limit of
{B(Tb At): t > 0}, is uniformly integrable.

case 4. General p.
Assuming without loss of generality that u({0}) < 1, let

H and therefore '1‘V =

v(R) = p(A‘R - {0}). Then Y: = Y. b

Tg is an embedding of v
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by the previous case. This implies
- - U
L(B(Tb)) u({o} )60 + (1 u({O}))L(B(Td))
= u({ohrs, + (1 ~ u({0}))v = p.

Y shows that {B(t A T!): ¢ > 0} is uniformly integrable. O

The fact that T, < T, .

THEOREM 3.8. Let T be any embedding of u.

(a) For all A > 0,
(1) P(M(T.) 2 A) = p (A) < P(M(T) 2 A)
(1) P(®(T,) 2 A) = p_(X) < P(m(T) 2 A)
(iii) P(B*(T,) 2 ) = max{p (A), p_(N), p(]x] > 2} < P(B*(T) > N).

u

(b) If E(M(T) + m(T)) = E(M(T, ) + m(T )), then T = T, on {T > 0} a.s.

and P(T = 0) = p({0}). 1In particular, if p({0}) = 0, then T = 'rg a.s.

Proof. (a) (3.21) shows that we may use Theorem 2.5(b) to conclude that
P(M(Tb) =) = p.+()\). By symmetry one gets P(m('rb) 2A) =p (N). The
inequalities in (i) and (ii) are immediate from Theorem 2.5(b).
lemma 3.6 implies that for A > 0,
P(M(Tb) 2N, m(Tb) <A) = P(M(Tb) >, m(Tb) <A, B(Tb) > 0)
+ P(M(Tb) 2 A, m(Tb) <A, B(Tb) < 0)

(3.29) < P(NCB(T)) < Y_(A)) + P(-A < B(T,) < -y (\)).
Replace B with -B and y with ; to see that
(3.30) P(m(T,) >, M(T,) < M < P(=y (M) < B(T,) < =\)

+ P(Y_(A) £ B(T,) <)),
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To prove (iii) we consider four cases.
case 1. y_(A) <A iy+()\).
P(B*(T,) 2 2) = P(m(T,) 2N + P(M(T) 2 Ay m(T,) < A)
= u_()\)l

by (3.29) and (ii).

case 2. Y+(k) <k <y_(N).

Use (3.30) as above to see that P(B*(Tb) AN = p+(K).

case 3. A iy+(k) and A < y_(\).
Lemma 3.6 shows that
P(B*(T,) 2 N) < P(B(T,) > min(X, y_(R)) + P(B(T,) < max(-}, =y, (A)))

= p(|B(T )] > A = u(]x] 2 1)

case 4. A > y+(7\) and A > y_(A).
Choose A' < A such that A' > y_(A'). Lemma 3.2(d), with a = b = )\', shows
that p([-)\',k‘]c) = 0 and therefore y,(t) < A' for all t > 0. This in turn

implies P(B*(Tb) >N < P(B*(Tb) > A') = 0,
(iii) follows easily from the above, and (i) and (ii).

(b) If E(M(T) + m(T)) = E(M(Tb) + m(Tb)). then (a) shows that
P(M(T) > \) = P(M(T,) 2N =p ()
P(m(T) > A) = P(m(T) > A) =p_(A)

for all A > 0. Theorem 2.5(b) gives

- < -
{B,2Nor B, <=y (M} <{m; >2} c{B >AorB <=~y (A\)} for all

rational A > 0 a.s.
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Approximating “T from below by rationals in the latter inclusion, we obtain
(3.31) BT = MT or BT S-_Y+(MT) a.s.
Symmetrically- we have
(3.32) BT =-m, or BT z_y_(mT) a.s.
(3.31) and (3.32), together with Lemma 3.2(c), show that
(3.33) if T > 0, then T z-Td a.8.
(3.34) {T = 0} = {sT =0} a.s.,
whence P(T = 0) = pu({0}). Assuming, without loss of generality that
p({0}) < 1, let Q(a) = P(A|T > 0) = P(AIBT # 0) and v(C) = p(c]{0}€). Then
Bt is a Q~Brownian motion and T (on(Q,¥,0)) is an embedding of v. (B,Td) is
independent of {T = 0} because Td is measurable function of B. Therefore

Q(B(T,) € A) = P(B(T,) € A) = v(R).
(recall from case 4 of Theorem 2.7 that Tg = T:). Hence T and Td are both
embeddings of v (on(Q,F,Q)) and T > T, Q-a.s. by (3.33). This implies T = T,
Q-a.s. (see Chacon-Ghoussoub (1979, p.27)) and therefore T = Td a.s. on
{T > 0}. 1If p({0}) = 0, then P(T = 0) = P(T = 0) = 0 and one has T = T_

a.s. O

Remarks. 1. (b) shows that Tb is the essentially unique embedding that

minimizes E(MT + mT) over all embeddings. The corresponding uniqueness
theorem for E(B;) is false. 1Indeed, if p is symmetric, then the Skorokhod

time T_, the filling scheme T, and T all satisfy L(B;) = L(‘BT|).

2. It is now of some interest to compute Tb in some specific cases. If p
assigns probability 1/4 to each of the points %2, 21 then

YR =1+ I\ > 1/3) (for A > 0). If T(A) = inf{t > O: B, € A}, then
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(1) if m(<x(1)) < 1/3
Tb =4 g(=-1) 4f M(x(-1) < 1/3
t({#2}) otherwise .

If p is'the uniform distribution on {-1,1], then

":(“'{1 . A1
and so
: —- - —+ .
Tb = inf{t > 0 B, 2_2/mt m or Bt < 2v’Mt Ht}
These results are most impressive if you start with the definition of Tb and

ask an unsuspecting friend for the law of B(Tb).

3. The existence of a unique, and fairly explicit, extremal embedding
should be compared to section 4 of Davis (1980), where a similar question is
considered for rearrangements of an integrable function f on the unit circle.
Here the problem is to find a rearrangement of f of minimal #P-nomm for

0 < p ¢ 2 and maximal Hp-norm for 2 ¢ p ¢ =. .In this setting the extremal
problem is harder to solve because one must work with a restricted class of
continuous martingales. 1Indeed there need not be an extremal rearrangement
(in the above sense) in general, and even if one exists, it may be rather
difficult to describe explicitly. Note also the extremality properties of 'I‘b
are stronger than those of the extremal rearrangement obtained by Davis.

This is essentially caused by the restriction f ?2dm = f fzdm where f is the

conjugate function of f.

4. If v is a second mean-zero probability on R, write v« u if there is a
Brownian motion B and a stopping time T such that L(Bo) = v, L(BT) = u and

BtAT is uniformly integrable. Such a T is an embedding from v to p, and is
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called an H‘-embedding from v to p if, in addition, E(B;) < wo, It is easy to
see that
(3.35) : vddp<=>pu=v *n for some probability n.

1 h () = [ el™ay(x) and

(3.36) {t:hv(t) # 0} is dense in R,

then the law, n, appearing in (3.35) is unique because hn(t) = hh(t)/hv(t) on
a dense set of t.

let B be an {Ft}-Brownian motion starting at zero, B, an Fo-measurable

0
f.v. with law v (a mean-zero law), and Bt = Bo + ;t' Assume (3.35) and let

T = ;ﬂ denote the embedding of N in ; considered in Theorem 3.7 (n is some

b b
fixed law obtained from (3.35)). We may, and shall, assume (s,Tb) is

independent of Bo. Then

= ~~ﬂ = =
L(B('rb)) L(B°+B(Tb)) vén = 4,

and hence Tb is an embedding from v to u.

lLet T be any embedding from v to yu and let L(BT - Bo) = n. If Tb = gg,

as above, then

P(B) ¢ A < M) = J 1x <) P(M, 2> A = x)dv(x) (M, = 1nf‘iTBs)

2J 1(x <X) P(M, 2 - x)av(x) (Theorem 3.8)
b

= P(B) <A <M ),

T
and therefore
(3.37) P(M_ > A) > P(M_ > A) for all A > 0.
T=""=""r~
b
Similarly we have
(3.38) P(mT 2N z_P(mT 2N for all A > O.

b
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Assume (3.36). Then (3.37) and (3.38) holds for any embedding from v to u.

1f E(MT + mT) = E(MTb+ me) then E(MT+ mT) = E(MT + m&b). The uniqueness of

b
n in (3.35) shows that T is an embedding of n in B. fTherefore Theorem 3.8(b)

!\q“

shows that T = Td on {T > 0} a.s. (the ~ indicates the underlying Brownian

motion is B) and in particular T = T, a.5. if n({0}) = 0.
Finally the above remarks (especially (3.37), (3.38)) together with

Theorems 3.8 and Lemma 2.6 prove

Theorem 3.9. Let v, 4 be a mean-zero probabilities on R. There is an

H1-embedding from v to u iff there is a probability n such that 4 = v*n and

H(n) < =.
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