Proposition 9.1 Assume \(X \) is a r.v. on a countable sample space \(S \) (i.e., \(X \) is a function from \(S \) to \(\mathbb{R} \)).

Then \(E(X) = \sum_{w \in S} X(w) P(\{w\}) \).

Note: The sum is a countable sum, hence a series, because \(S \) is countable. Assume \(S \) is finite the first time you read this. \(P(\{w\}) \) is the probability of the particular outcome \(w \).

Proof: Let \(S_i = \{ X = x_i \} \) where \(x_1, \ldots, x_n \) are the distinct possible values of \(X \). (If \(X \) can take on countably many values, the proof is readily adapted by considering an \(\omega \) sequence \(x_1, x_2, \ldots \)).

\[S_i = \{ w : X(w) = x_i \} = \bigcup_{w \in S_i} (\text{a countable disjoint union}) \]

(ii) \(P(S_i) = \sum_{w \in S_i} P(\{w\}) \) by countable additivity.

By definition:
\[E(X) = \sum_{i=1}^{n} x_i P(S_i) \]

\[= \sum_{i=1}^{n} x_i \sum_{w \in S_i} P(\{w\}) \quad \text{by (i)} \]

\[= \sum_{i=1}^{n} \sum_{w \in S_i} X(w) P(\{w\}) \quad \text{by (i)} \]

The line holds since \(S_1, S_2, \ldots \) partition \(S \) into \(n \) disjoint sets and so summing \(w \) over each \(S_i \) is just summing \(w \) over \(S \).