Wiener Measure

\[W^d = C([0, \omega_1], 1^{\omega_1}) \times \{ \omega : \omega \in \Omega \} \to 1^{\omega_1} \text{ of } \omega \text{-continuous } \sigma \]

Set \(Y^d = \omega \bmod \delta \) and \(W^d = \delta (Y^d : b(30)) \) a \(\sigma \)-field on \(W^d \).

If \(w, w_1, w_2 \in W^d \), let \(d(w, w_2) = \frac{1}{\sqrt{n}} \sup_{b \in \mathbb{N}} \left| \frac{1}{n} \sum_{b=1}^{n} Y^d(b) - \frac{1}{n} \right| \leq \frac{2}{n} \sum_{b=1}^{n} \left| w(b) - w_2(b) \right| \).

Then \((W^d, d) \) is a metric space, and \(W_n \overset{d}{\to} w \iff \{ u_n \to u \} \) uniformly on compact sets.

Prop. 5.1: \(W^d = \theta(W^d) = \theta \left(\bigcup U : U \subseteq W^d, U \text{ open } \right) \).

(1) \(y \to Y^d(y) \) is continuous, hence \(\theta(W^d) \)-measurable.

\[W^d = \theta(Y^d : b(30)) \subseteq \theta(W^d) . \]

For the converse inclusion, fix \(w \in W^d, n \in \mathbb{N} \).

\[d_n(w, w) = \sup_{b \in \{1, \ldots, n \}} \left| \frac{1}{n} \sum_{b=1}^{n} Y^d(b) - \frac{1}{n} \right| \text{ is } W^d \text{-measurable in } W . \]

By definition, \(W \to d(w, w) \) is \(W^d \)-measurable.

\[\theta(W^d) \subseteq \theta \left(\bigcup_{b \in \mathbb{N}} \{ w : d_n(w, w) \leq \varepsilon \} \text{ a.e. } w \in W^d \right) . \]

\((W^d, d) \) is separable ("polynomials" with rational coefficients are dense).

Every open set, being a countable union of open balls, is in \(W^d \).

\[\theta(W^d) \subseteq \theta(W^d) . \]

\(W^d_0 = \text{Field of finite dimensional sets in } W^d \)

\[\{ A \in W^d_0 : \text{a.e. } \omega \} \to = \omega \subseteq \{1, \ldots, n\}, \quad C \in \theta \left(\mathbb{R}^{(\omega)} \right) \} \}

\[\theta(W^d_0) = \theta(W^d) . \]

Let \(B^d \in \mathbb{N} \) be a \(d \)-dimensional Brownian motion on \((\Omega, \mathcal{F}) \) with initial law \(\mu \). Redefine \(B^d \) be \(\mathcal{G} \) on a well set \(\omega \) so that \(B^d(\omega) \) is cont's \(\sigma \).

Define \(B : \mathbb{R} \to W^d \). Then \(B^d(A) \subseteq \mathcal{G} \quad \forall \ A \in W^d \)

\[w \to B^d(w) \Rightarrow B \text{ is measurable map from } \mathbb{R} \text{ to } W^d \]

Define \(p^d \) on \((W^d, W^d) \) by \(p^d(A) = P(B^d(A)) \).

For \(A \in W^d_0 \) a.e. \(\omega \), \(p^d(A) = P \left(\omega : (B_{\omega(1)}, \ldots, B_{\omega(m)}) \in \mathbb{C} \right) \)

\(\text{(by PPD)} \)

\[= \sum_{\mathbb{C} \in \mathbb{C} \{m \ldots m \}} \prod_{i=1}^{m} \left(p^d_{B_{\omega(i)}, B_{\omega(i+1)}} (x_i - x_{i+1}) \right) dx_1 \ldots dx_m dp_{\omega(1), \ldots, \omega(m)} . \]
This shows that $p_t^W(X)$ does not depend on the choice of B. (New W^B_t)

By Bessel's formula, p_t^W uniquely determines p_t.

p_t^W does not depend on the choice of B.

Def. We call p_t^W Wiener measure with initial law μ.

So $p_t^W = p_t^\mu$, p_0^μ is called Wiener measure.

Remark. On $(W_0^W, \mathcal{F}^W, p_t^W)$, if $W_t^W = \mathcal{F}^W_t = \{ \sigma_{s \leq t} \}$, then $p_t^W = \mathcal{F}^W_t$.

Then $p_t^W = \mathcal{F}^W_t$ is a W_t^W-Brownian motion because it has the same law as B which is on \mathcal{F}^W_t - Brownian motion.

We call $(W_t^W, \mathcal{F}^W_t, p_t^W, \mathcal{F}^W_t, \mathcal{P}^W_t)$ the canonical representation of Brownian motion.

Brownian Semigroup

Let $p_t = \frac{1}{2 \pi t} e^{-x^2/(2t)}$, in our old notation.

The semigroup property now becomes:

$$p_t(x, y) = \int p_s(x, z) p_t(z, y) dz$$

For $f \in \mathcal{B}(R^d)$, $t > 0$, let $P_t f(x) = (\int f(y) p_t(x, y) dy)$. Then $x \to P_t f(x)$ is in $\mathcal{B}(R^d)$. (For measurability note that for $f \in L^2(\mathbb{R}^d)$ and use Monotone Class Thm.)

$$P_t : \mathcal{B}(R^d) \rightarrow \mathcal{B}(R^d)$$

$$p_t f(x) = \int f(y) p_t(x, y) dy = \int \left(p_t(x, z) \int f(y) p_t(z, y) dy \right) dz = \int p_t(x, z) f(z) dz = p_t f(z)$$

$$p_{s+t} f(x) = p_s p_t f(x)$$

Call $(P_t)_{t \geq 0}$ the Brownian semigroup.
Thm 5.17. (Markov Property) Let B be a d-dimensional Brownian motion.

Let $g, h : \mathbb{R} \to \mathbb{R}$ be bounded measurable functions.

\[
P_r \{ g(B_t) \, | \, \mathcal{F}_s \} \left(B_t \in A \right) = P_r \left\{ g(B_t) \in A \right\}.
\]

P1) Recall: Y, Z independent of \mathcal{F}_s, α bounded measurable.

\[
E \left[\alpha(Y, Z) 1_{B_s \in A} \right] = \int \alpha(y, z) P(A \mid B_s = y) \, dP(y).
\]

So

\[
\text{LHS} = E \left(\frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \right) \mid \mathcal{F}_s = \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

(ML, iid)

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]

\[
= \int \frac{E(B_{t+\delta}. - B_t)}{\sqrt{\delta}} \, dP(y).
\]