1. (a) Let \(f : \mathbb{R}_+ \to \mathbb{R} \) be continuous and \(B \) be a standard 1-dimensional \((\mathcal{F}_t)\)-Brownian motion. Show that \(I_t = \int_0^t f(s) dB_s \) is a mean 0 normal r.v. with variance \(\int_0^t f(s)^2 ds \).

Hint. One approach is to use Ito's Lemma to find the characteristic function of \(I_t \).

(b) Consider the SDE: \(X_t = x + \sigma B_t - \lambda \int_0^t X_s ds \), where \(\sigma, \lambda > 0 \), \(x \in \mathbb{R} \) and \(B \) is as above. Show \(X \) has a unique solution and show that it is given by \(X_t = \sigma e^{-\lambda t} \int_0^t e^{\lambda s} dB_s + xe^{-\lambda t} \).

(c) Show that \(X_t \) converges in distribution as \(t \to \infty \) and find the limiting distribution.

2. **Not to hand in.**

(a) Let \(X \) be a non-negative supermartingale and \(S \leq T \) be uniformly bounded stopping times. Show that \(E(X_T | \mathcal{F}_S) \leq X_S \) a.s. This result holds without the non-negativity hypothesis but this simplifies the proof a bit (feel free to prove this without the non-negativity assumption).

(b) Let \(X \) be as above and \(T \) be the first time \(t \) that \(X_t = 0 \) (\(T \leq \infty \)). Prove that \(X_t = 0 \) for all \(t \geq T \) a.s.

3. Let \(B \) be a standard one-dimensional \((\mathcal{F}_t)\)-Brownian motion, \(a, b > 0 \), let \(P \) denote its law, and let \(\tau_a = \inf\{t \geq 0 : B_t = a\} \).

(a) Let \(Q_b \) be the law of \(X_t = B_t + bt \) on \((W, \mathcal{W}) = (W^1, \mathcal{W}^1)\). Prove that \(P \) and \(Q_b \) are equivalent laws on each \(\mathcal{F}_t^{0,X} \) but are not equivalent on \(\mathcal{F}_\infty^{0,X} \).

(b) The reflection principle implies that

\[
P(\tau_a \leq t, B_t \in dy) = \left[\int_0^t (a/s)p_s(a)p_{t-s}(y-a)ds \right]dy.
\]

Convince yourself (but not me) that this is “obvious”. Use this and the Cameron-Martin-Girsanov formula to show that the density function of \(\tau_{a,b} = \inf\{t \geq 0 : B_t = a - bt\} \) is \((a/t)p_t(a-bt)\). [Here \(p_t(x) = (2\pi t)^{-1/2}e^{-x^2/2t} \].

4. If \(M \in c\mathcal{M}_{0,1} \) show that for any \(t, x, y > 0 \),

\[
P(M_t^* \geq x, [M]_t \leq y) \leq 2 \exp(-x^2/2y).
\]

Conclude that if \([M]_t \leq ct\) for all \(t \), then for all \(a, t > 0 \), \(P(M_t^* \geq at) \leq 2 \exp(-a^2t/2c) \).

Hint. Recall our proof of Lemma 2.7–the exponential bounds for Brownian motion.