Math 546 Assignment 5 (due April 2)

1. Verify that the Brownian semigroup \(P_t f(x) = \int f(y)p_t(y - x)dy \) is a Feller semigroup. Here
\[
p_t(z) = \exp\{-\|z\|^2/2t\}(2\pi t)^{-d/2}
\]
is the \(d \)-dimensional density of Brownian motion. (The fact that \(p_t * p_s = p_{s+t} \) gives the semigroup property. You need to verify the other properties.)

2. Prove Proposition 5.12: Let \(Z \) be a continuous non-negative \((\mathcal{F}_t)\)-local martingale such that \(E(Z_0) < \infty \). Show that:
 (a) \(Z \) is an \((\mathcal{F}_t)\)-supermartingale and \(Z_t \to Z_\infty \) a.s.
 (b) \(Z \) is an \((\mathcal{F}_t)\)-martingale iff \(E(Z_t) = E(Z_0) \) for all \(t > 0 \).
 (c) \(Z \) is a uniformly integrable \((\mathcal{F}_t)\)-martingale iff \(E(Z_\infty) = E(Z_0) \).

3. Let \(U \) be an open subset of \(\mathbb{R}^d \) and \(X \) be a continuous semimartingale taking values in \(U \) for all \(t \geq 0 \) a.s. If \(f \in C^2(U) \), then Itô’s lemma continues to apply to \(f(X_t) \). Convince yourself, but not me, that our proof can be adapted to this setting by considering the process stopped when it gets within a distance \(1/n \) of \(U^c \).

 Let \(B \) be a 3-dimensional Brownian motion starting at a non-zero point \(x \). Let \(T_a = \inf\{t \geq 0 : |B_t| \leq a\} \) and \(S_b = \inf\{t \geq 0 : |B_t| \geq b\} \). Let \(X(t) = |B(t)|^{-1} \).

 (a) For \(a < |x| < b \), show that \(X(t \wedge T_a \wedge S_b) \) is a martingale and use it to find \(P(T_a < S_b) \).

 Now show that \(P(B_t = 0 \text{ for some } t \geq 0) = 0 \).

 (b) Show \(X_t \) is an \(L^2 \)-bounded (hence uniformly integrable) local martingale and supermartingale, but is not a martingale.

 (c) Prove that \(\lim_{t \to \infty} |B_t| = \infty \) a.s.