1. Let Z be a continuous non-negative (\mathcal{F}_t)-local martingale such that $E(Z_0) < \infty$. Show that:
 (a) Z is an (\mathcal{F}_t)-supermartingale and $Z_t \to Z_\infty$ a.s.
 (b) Z is an (\mathcal{F}_t)-martingale iff $E(Z_t) = E(Z_0)$ for all $t > 0$.
 (c) Z is a uniformly integrable (\mathcal{F}_t)-martingale iff $E(Z_\infty) = E(Z_0)$.

2. (a) Let $f : \mathbb{R}_+ \to \mathbb{R}$ be Borel measurable and satisfy $\int_0^t f(s)^2 \, ds < \infty$ for all $t > 0$, and B be a standard 1-dimensional (\mathcal{F}_t)-Brownian motion. Show that $Z_t = \int_0^t f(s)dB_s$ is a mean 0 normal r.v. and find its variance.
 Hint. Consider $Y(t) = \exp[i\theta Z_t + (\theta^2/2) \int_0^t f(s)^2 \, ds]$ and use Ito's Lemma.

 (b) Consider the Stochastic Differential Equation: $X_t = x + \sigma B_t - \lambda \int_0^t X_s \, ds$, where $\sigma, \lambda > 0$, $x \in \mathbb{R}$ and B is as above. Show X_t has a unique solution and show that it is given by $X_t = \sigma e^{-\lambda t} \int_0^t e^{\lambda s} dB_s + x e^{-\lambda t}$. Do this by considering $e^{\lambda t} X_t$.

 (c) Show that X_t converges in distribution as $t \to \infty$ and find the limiting distribution.

3. (Tanaka’s formula and local time). Let B be a standard 1-dimensional (\mathcal{F}_t)-Brownian motion. For every $\varepsilon > 0$ set $g_\varepsilon(x) = \sqrt{\varepsilon + x^2}$ for $x \in \mathbb{R}$. Below you will show that Ito’s lemma remains valid in an appropriate sense for Brownian motion and the non-C^2 function $f(x) = |x|$.

 (a) Show that $g_\varepsilon(B_t) = \sqrt{\varepsilon} + M^\varepsilon + A^\varepsilon$, where M^ε is a square integrable martingale and A^ε is a continuous increasing process. Give explicit formulae for M^ε and A^ε.

 (b) Set $sgn(x) = 1_{\{x > 0\}} - 1_{\{x < 0\}}$. Show that for for every $T > 0$

 $$\sup_{t \leq T} |M^\varepsilon_t - \int_0^t sgn(B_s)dB_s| \to 0 \text{ in } L^2 \text{ as } \varepsilon \to 0.$$

Conclude that there is a continuous increasing process L such that

$$|B_t| = \int_0^t sgn(B_s)dB_s + L_t \text{ for all } t \geq 0,$$

and for all $T > 0$,

$$\sup_{t \leq T} |A^\varepsilon(t) - L(t)| \to 0 \text{ in } L^2 \text{ as } \varepsilon \to 0.$$

(c) Show that $\beta_t = \int_0^t sgn(B_s)dB_s$ is an (\mathcal{F}_t)-Brownian motion.

(d) Prove that with probability 1, for all $0 \leq u < v$, $B \neq 0$ on (u, v) implies $L_v = L_u$. Hence $t \to L_t$ only increases on the zero set of B.

 Hint: Explain why it suffices to show that for fixed rationals $p < q$, w.p. 1 $B \neq 0$ on $[p, q]$ implies $L_p = L_q$.

(e) Show that $L_t = \sup_{s \leq t} -\beta_s$ for all t a.s., and conclude that $L_t > 0$ for all $t > 0$ a.s.

 Hint: In order to show $L_t \leq \sup_{s \leq t} -\beta_s$ consider L_{α_t}, where $\alpha_t = \sup\{s \leq t : B_s = 0\}$, and recall (d). The reverse inequality is easy to prove.