Math 546 Assignment 1 (due Thurs. Oct. 3)

1. If \(X_t, t \geq 0 \) and \(Y_t, t \geq 0 \) are a.s. right-continuous stochastic processes such that \(Y \) is a version of \(X \), prove that \(X \) and \(Y \) are indistinguishable.

2. Let \((\mathcal{F}_t^0)_{t \geq 0} \) be a filtration on a complete probability space \((\Omega, \mathcal{F}, P)\) and let \(\mathcal{N} \) be the set of \(P \)-null sets in \(\mathcal{F} \). Show that \(\mathcal{F}_t = \overline{\mathcal{F}_t^0} \) is right-continuous (and hence satisfies the usual hypotheses).

 Hint: You may assume the standard measure theoretic result that \(A \in \mathcal{F}_t \) if and only if \(A = (B \cup N^1) - N^2 \) for some \(N^i \in \mathcal{N} \) and \(B \in \mathcal{F}_t^0 \).

3. Let \((B_t, t \geq 0) \) be an \((\mathcal{F}_t^0) \)-Brownian motion. Prove it is also an \((\mathcal{F}_t) \)-Brownian motion where \(\mathcal{F}_t = \overline{\mathcal{F}_t^0} \).

 Hint: One approach is to let \(A \in \mathcal{F}_s (P(A) > 0) \) and find the (conditional on \(A \)) characteristic function (for \(t > s \geq 0 \) and \(\theta \in \mathbb{R}^d \)),

 \[E(\exp(i\theta \cdot (B_t - B_s))|A). \]

4. If \(B \) is a standard one-dimensional \((\mathcal{F}_t^0) \)-BM prove that \(M(t) = B(t)^2 - t \) is an a.s. continuous \((\mathcal{F}_t^0) \)-martingale.

5. Law of the iterated logarithm–upper bound. If \(B \) is a standard one-dimensional Brownian motion, prove that

 \[\limsup_{t \to 0^+} \frac{B_t}{\phi(t)} \leq 1 \text{ a.s.}, \]

 where \(\phi(t) = \sqrt{2t \log \log(1/t)} \) for \(t < e^{-1} \).

 Hint. Let \(M_t = \sup_{s \leq t} B_s \). Let \(r \) and \(c \) be real numbers such that \(1 < 1/r < c^2 \). Bound the probabilities \(P(M_r/n > c\phi(r^n)) \) when \(n \to \infty \) and infer that a.s.,

 \[\limsup_{t \to 0^+} \frac{B_t}{\phi(t)} \leq 1 \text{ a.s.} \]

6. [Not to hand in] Let \(\{X_n : n \in \mathbb{Z}_+\} \) be a reverse submartingale satisfying \(\inf_n E(X_n) > -\infty \). Prove that \(\{X_n\} \) is uniformly integrable.

 Hint: We proved in class that the result holds for the non-negative reverse submartingale \(X_n^+ \) and therefore that

 \[\lim_{\lambda \to \infty} \sup_n E(X_n 1(X_n \geq \lambda)) dP = 0. \]

 Next, prove that for \(\lambda > 0, n > k \)

 \[E(X_n 1(X_n \leq -\lambda)) \geq E(X_n) - E(X_k) + E(X_k 1(X_n \leq -\lambda)). \]