Math 421/510 Assignment 3 (due Tues. March 4)

1. p. 165 #38

For all \(x, y \in X \), and \(\lambda \in K \), \(T(\lambda x + y) = \lim_n T_n(\lambda x + y) = \lim_n \lambda T_n(x) + T_n(y) = \lambda Tx + Ty \). So \(T \) is linear. For each \(x \in X \), \(\sup_n \|T_n x\| < \infty \) since \(\{T_n x\} \) converges.

Therefore by the Uniform Boundedness Principle \(\sup_n \|T_n\| = C < \infty \). Therefore \(\|Tx\| = \lim_n \|T_n x\| \leq C \|x\| \). Therefore \(T \) is bounded.

2. p. 118 #2

If \(x \neq y \) then \(\{x\}^c \) is an open neighbourhood of \(y \) not containing \(x \). Hence \(X \) is \(T_1 \).

On the other hand if \(U_x \) and \(U_y \) are open neighbourhoods of \(x \) and \(y \), respectively, then \((U_x \cap U_y)^c = U_x^c \cup U_y^c \) is finite and hence \(U_x \cap U_y \) is non-empty since \(X \) is infinite. This shows \(X \) is not \(T_2 \).

Suppose \(X \) has a countable neighbourhood base, \(\{U_n\} \) at \(x_0 \). As \(X \) is \(T_1 \), it follows that \(\cap_n U_n = \{x_0\} \). Therefore \(X - \{x_0\} = (\cap_n U_n)^c = \cup_n U_n^c \) is a countable union of finite sets and hence \(X \) is countable.

Suppose \(X \) is countable. Then \(\mathcal{T} = \{\emptyset\} \cup \cup_{n=1}^{\infty} \{F^c : F \subset X, \text{card}(F) = n\} \) is a countable union of countable sets and so is countable. In particular \(X \) is clearly first countable.

3. If \(\mathbb{R} \) is given the cofinite topology show that \(\mathbb{R} \) is separable but not first countable. (Clearly you should use Q. 2 for part of this).

Since \(\mathbb{R} \) is uncountable, Q.2 shows that it is not first countable in the cofinite topology. If \(U \) is any non-empty open set the fact that \(U^c \) is finite means the \(U^c \) cannot contain \(\mathbb{Q} \) and so \(\mathbb{Q} \cap U \) is non-empty. Therefore \(\mathbb{Q} \) is a countable dense set and so \(\mathbb{R} \) is separable.

4. p. 118 #5

Let \(\{x_n\} \) be a countable dense set in the separable metric space \(X \) and \(\mathcal{B} = \{B(x_n, r) : n \in \mathbb{N}, r \in \mathbb{Q}, r > 0\} \). Clearly \(\mathcal{B} \) is countable and we now show it is a base for \(X \). Let \(x \in U \) for some open \(U \). Choose \(r > 0 \) rational so that \(B(x, r) \subset U \). Choose \(x_n \in B(x, r/2) \). Then \(V = B(x_n, r/2) \in \mathcal{B} \) and \(x \in V \subset U \), the latter inclusion by the triangle inequality.

This shows \(\mathcal{B} \) is a neighbourhood base at the arbitrary point \(x \) and hence is a countable base for \(X \).

5. p. 123 #17

Assume for all \(x \neq y \) there is an \(f \in \mathcal{F} \) so that \(f(x) \neq f(y) \). Fix \(x \neq y \) and choose \(f \) as above. As \(\mathbb{R} \) is Hausdorff we may choose disjoint open nbhd.’s, \(U_x \) and \(U_y \), of \(f(x) \) and \(f(y) \) in \(\mathbb{R} \). Then \(f^{-1}(U_x) \) and \(f^{-1}(U_y) \) are disjoint open sets in \(X \) containing \(x \) and \(y \), respectively, and so \(X \) is Hausdorff.

Assume \(X \) is Hausdorff. Let \(x \neq y \) in \(X \). Then there is a basic open set of the form \(\cap_i f_i^{-1}(U_i) \) containing \(x \) but not \(y \) where \(f_i \in \mathcal{F} \) and \(U_i \) is open in \(\mathbb{R} \). Therefore for some \(i_0 \) we have \(f_{i_0}(y) \notin U_{i_0} \) but \(f_{i_0}(x) \in U_{i_0} \). This implies \(f_{i_0}(x) \neq f_{i_0}(y) \) and we are done.

6. p. 127 #32, 33, 34

#32. Assume \(X \) is not \(T_2 \). Let \(x \neq y \) be such that any open neighbourhoods of \(x \) and \(y \) intersect. Let \(\mathcal{N}_x \) and \(\mathcal{N}_y \) be the sets of open nbhd’s of \(x \) and \(y \), respectively. We make \(I = \mathbb{N}_x \times \mathbb{N}_y \) into a directed set by defining \((U_x, U_y) \geq (V_x, V_y) \) iff \(U_x \subset V_x \) and
$U_y \subset V_y$. Define $x(U_x, U_y)$ to be a point in $U_x \cap U_y$, where $(U_x, U_y) \in I$. For any $U \in \mathcal{N}_x$ let $\alpha_0 = (U, V)$ where V is some set in \mathcal{N}_y. If $(U_x, U_y) \geq (U, V)$, then $x(U_x, U_y) \in U_x \subset U$ and so $\lim_i x_i = x$. By symmetry we also get $\lim_i x_i = y$.

Assume X is T_2. Assume $\lim_i x_i = x$ and $y \neq x$. Choose an open nbhd U of x and a disjoint open nbhd V of y. Then $x_i \in U$ eventually and so $x_i \not\in V$ eventually. The latter means $\{x_i\}$ cannot converge to y. Hence a net can converge to at most one point.

#33. Assume $x \in \cap_\alpha \bar{E}_\alpha$. Let U be an open nbhd of x and $\alpha \in A$. Then $x \in \bar{E}_\alpha$ implies $U \cap E_\alpha$ is non-empty and so there is an $\alpha' \geq \alpha$ so that $x_{\alpha'} \in U$. This shows that x_{α} is in U frequently and so x is a limit point of $\{x_\alpha\}$.

Assume x is a limit point of $\{x_\alpha\}$. Let $\alpha \in A$. If U is an open nbhd of x, there is an $\alpha' \geq \alpha$ so that $x_{\alpha'} \in U$. This means that $E_\alpha \cap U$ is non-empty and so $x \in \bar{E}_\alpha$ (otherwise we could take $U = \bar{E}_\alpha^c$ in the above and obtain a contradiction). Therefore $x \in \cap_\alpha \bar{E}_\alpha$.

#34. Assume $\lim_\alpha x_\alpha = x$. If $f \in \mathcal{F}$, then f is continuous in the weak-\mathcal{F} topology and so $\lim f(x_\alpha) = f(x)$.

Assume $\lim f(x_\alpha) = f(x)$ for all $f \in \mathcal{F}$. Consider the basic neighbourhood of x, $U = \bigcap_{j=1}^n f_j^{-1}(V_j)$, where $f_j \in \mathcal{F}$ and V_j is open in the range space of f_j. By hypothesis and the fact that A is directed there is an $\alpha_0 \in A$ so that $\alpha \geq \alpha_0$ implies that $f_j(x_\alpha) \in V_j$ for all $j = 1, \ldots, n$. This means that $x_{\alpha} \in U$ for $\alpha \geq \alpha_0$ and so $\lim x_\alpha = x$.