Math 420/507 Assignment 9-not to hand in

1. p. 92 # 10, #13

2. Assume ν and μ are measures on (X, \mathcal{A}) such that μ is σ-finite and $\nu \ll \mu$.
 (a) Prove that for any non-negative measurable function f on X,
 \[
 \int f \, d\nu = \int f \frac{d\nu}{d\mu} \, d\mu.
 \]
 (b) If $\frac{d\nu}{d\mu} > 0$ μ-a.e. prove that $\mu \ll \nu$ and $\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1}$. Of course this last statement can only mean they agree μ-a.e.

3. p. 93 #17 (I hope to discuss this question in class.)

4. p. 93 #11 (Here you can use Thm. 3.5 in the text. The L^1 “metric” is
 \[
 \|f - g\|_1 = \int |f - g| \, d\mu.
 \]