1. Let X be a countable set and let $\mathcal{P}_F(X)$ denote the finite subsets of X. Show that $\mathcal{P}_F(X)$ is countable.

2. Let X be a non-empty set and let \mathcal{R} be the set of partial orders on X. Show that \mathcal{R} is partially ordered by inclusion (\subset) (this is as trivial as it seems). Now show that any total order on X is a maximal element in (\mathcal{R}, \subset).

3. Prove that if every countable subset of a totally ordered set X is well-ordered then X itself is well-ordered.

4. Let R be a partial order on a non-empty set X. Prove there is a total order S on X such that $R \subset S$, i.e., S extends R.

Hint: Prove the converse of the final statement in Q. 2.