Conditional expectation is one of the most useful tools of probability. The Radon-Nikodym theorem enables us to construct conditional expectations.

Definition 1. A measure μ on (Ω, F) is σ-finite iff there is $A_n \in F$ satisfying $A_n \uparrow \Omega$ where $\mu(A_n) < \infty$ for all n.

Definition 2. Let μ, ν be measures on (Ω, F). Then ν is absolutely continuous with respect to μ ($\nu \ll \mu$) iff for all $A \in F$, $\mu(A) = 0$ means $\nu(A) = 0$.

For instance, let (Ω, F, P) be a probability space and let $X: \Omega \to [0, \infty)$ be a random variable. Let $\nu(A) = \int_A X dP$ for all $A \in F$. Then ν is a σ-finite measure which is absolutely continuous ($\nu \ll P$).

Proof. Let $A_n = \{X_n \leq n\}$, which increases to Ω. Then $\nu(A_n) \leq \int n dP = n < \infty$ implies that ν is σ-finite. Now let A satisfy $P(A) = 0$. Then $X1_A = 0$ a.s. implies that $\int X1_A dP = \int 0 dP = 0 = \nu(A)$. Hence $\nu \ll P$.

The Radon-Nikodym theorem says that the converse of the above phenomenon is true.

Theorem 4.1 (Radon-Nikodym). Let ν, μ be σ-finite measures on a measure space (Ω, F) such that $\nu \ll \mu$. Then there is a random variable $X: \Omega \to [0, \infty)$ such that, for all $D \in F$, $\nu(D) = \int_D X d\mu$. Write $X = \frac{d\nu}{d\mu}$. If X' is another random variable satisfying the previous condition, then $X = X'$ almost surely.

Proof. Refer to Durrett, Chapters A.4.5 and A.4.6

Radon-Nikodym gives us existence of conditional expectations. Write $D \subset \sigma F$ if D is a sub σ-field of F.

Theorem 4.2. Suppose $D \subset \sigma F$ and X is integrable on (Ω, F). Then there is a unique, up to P-null sets, random variable $E(X|D)(\omega)$ which is i) D-measurable and ii) for all $D \in D$, we have:

$$\int_D E(X|D) dP = \int_D X dP$$

Call $E(X|D)$ the conditional expectation of X given D.

Proof. Case 1: Firstly, suppose X is a non-negative random variable. Define ν on sub σ-algebra D by $\nu(D) = \int_D X dP$. We have $\nu \ll P$ where P is the measure on the original probability space restricted to D. Hence, Radon Nikodym says that there is a random variable $E(X|D) > 0$ such that for all sets $D \in D$, we have $\int_D X dP = \int_D E(X|D) dP$.

Case 2: In the general case, suppose $X = X^+ - X^-$. Apply Case 1 to each of X^+, X^- and define $E(X|D) = E(X^+|D) - E(X^-|D)$. Then the resulting random variable is D-measurable.
since each \(x - y \) is a measurable function whenever \(x, y \) are, and furthermore ii) holds by the linearity of the integral.

Uniqueness: Suppose \(\tilde{E}(X|\mathcal{D}) = E(X|\mathcal{D}) \) is a random variable satisfying conditions i/ii. We need to show that they are equal almost surely. Consider the set \(D_n = \{ \omega : (\tilde{E}(X|\mathcal{D}) - E(X|\mathcal{D}))\omega \geq \frac{1}{n} \} \), which is \(\mathcal{D} \)-measurable. Then,

\[
P(D_n) \leq \int_{D_n} (\tilde{E}(X|\mathcal{D}) - E(X|\mathcal{D})) dP = 0
\]

since each of \(\tilde{E}(X|\mathcal{D}) \) and \(E(X|\mathcal{D}) \) integrate like \(X \) over \(\mathcal{D} \)-measurable sets. Hence, \(D_n \uparrow \{ \tilde{E}(X|\mathcal{D}) > E(X|\mathcal{D}) \} \) means that \(P(\tilde{E}(X|\mathcal{D}) > E(X|\mathcal{D})) = \lim P(D_n) = 0 \). Hence, \(\tilde{E}(X|\mathcal{D}) \leq E(X|\mathcal{D}) \) almost surely, and by symmetry, the reverse inequality holds a.s.. Hence, \(\tilde{E}(X|\mathcal{D}) = E(X|\mathcal{D}) \), almost surely. \(\square \)

If \(Y \) is a random vector, define \(E(X|Y) = E(X|\sigma(Y)) \). Furthermore, if \(B \) is an event with \(P(B) > 0 \), then \(E(X|B) = \frac{1}{P(B)} \int_B X dP \in \mathbb{R} \).

The following are some examples of conditional expectation, with an intention of relating the abstract definition of conditional expectation to more concrete examples.

- Let \(\Omega = B_1 \cup \ldots \cup B_N \) where each \(B_i \in \mathcal{F} \) satisfy \(P(B_i) > 0 \). Let \(\mathcal{D} = \sigma(\{B_1, \ldots, B_N\}) \). An element of the \(\sigma \)-field \(D \) is a finite disjoint union of the \(\{B_i\} \).

Claim: \(E(X|\mathcal{D})(\omega) = \sum_{i=1}^{N} E(X|B_i)1_{B_i}(\omega) \).

Proof. Let \(Z(\omega) = \sum_{i=1}^{N} E(X|B_i)1_{B_i}(\omega) \). Since \(B_i \in \mathcal{D} \), then \(Z \) is a \(\mathcal{D} \)-measurable function. It remains to verify property (ii) of conditional expectation. To begin, take one of the \(B_j \) s.

Then

\[
\int_{B_j} Z dP = E(X|B_j)P(B_j) = \int_{B_j} E(X|B_j)dP = \frac{P(B_j)}{P(B)} \int_{B_j} X dP = \int_{B_j} X dP
\]

by definition of conditioning of an event of positive probability. Now recall that the elements of \(\mathcal{D} \) are finite disjoint unions of the \(B_j \). Let \(D = \bigcup_{k=1}^{m} B_{ik} \). Then by linearity and the previous observation:

\[
\int_{D} Z dP = \sum_{k=1}^{m} \int_{B_{ik}} Z dP = \sum_{k=1}^{m} \int_{B_{ik}} X dP = \int_{D} X dP
\]

By uniqueness of conditional expectations, then \(E(X|\mathcal{D}) = Z \) almost surely. \(\square \)

- Suppose \(X \) is a \(\mathcal{D} \)-measurable function. Then here, we “know everything”, and then \(E(X|\mathcal{D})(\omega) = X(\omega) \) almost surely. Property i is verified by assumption, and ii follows trivially.

- Suppose random variables \(D \) and \(X \) are independent (which occurs if sigma fields \(\sigma(D), \sigma(X) \) are.) Here we “know nothing”.

Claim: \(E(X|D) = E(X) \) almost surely.

2
Proposition 4.3. Let \(X_1, X_2 \) be integrable random variables and \(D \subset \sigma \). Then \(\sigma \subset \mathcal{F} \) be sub-\(\sigma \)-fields.

a. For all \(a_1, a_2 \in \mathbb{R} \): \(E(a_1X_1 + a_2X_2|D) = a_1E(X_1|D) + a_2E(X_2|D) \) almost surely.

b. If \(X_1 \leq X_2 \) almost surely, then \(E(X_1|D) \leq E(X_2|D) \) almost surely.

c. \(E(E(X_1|\mathcal{E})|D) = E(X_1|D) \) almost surely.

Proof. 1. Suppose \(Z = a_1E(X_1|D) + a_2E(X_2|D) \). Then \(Z \) is \(D \)-measurable by linearity. Suppose \(D \in \mathcal{D} \). By linearity of the integral and since \(E(X_1|D), E(X_2|D) \) are conditional expectations, then:

\[
\int_D Z \, dP = \int_D E(X_1|D) \, dP + \int_D E(X_2|D) \, dP = a_1 \int_D X_1 \, dP + a_2 \int_D X_2 \, dP = \int_D (a_1X_1 + a_2X_2) \, dP
\]

means that \(Z = a_1E(X_1|D) + a_2E(X_2|D) \) almost surely.

2. Since \(X_2 - X_1 \geq 0 \) almost surely, then by a, it suffices to show that \(E(X_2 - X_1|D) \geq 0 \) almost surely. Let \(D_n = \{ \omega : E(X_2 - X_1|D) \leq -\frac{1}{n} \} \) which is in \(\mathcal{D} \). Then

\[
\int_{D_n} E(X_2 - X_1|D) \, dP = \int_{D_n} X_2 - X_1 \, dP \geq 0
\]

by assumption, means that \(P(D_n) = 0 \) for all \(n \). Hence \(P(\bigcup_n D_n) = 0 \) and hence \(E(X_2 - X_1|D) \geq 0 \) almost surely.

3. By definition \(Z = E(X_1|D) \). Furthermore, since sets which are \(D \)-measurable are also \(\mathcal{E} \)-measurable, then by the definition of conditional expectation and the previous observation:

\[
\int_D E(E(X|\mathcal{E})|D) \, dP = \int_D E(X|\mathcal{E}) \, dP = \int_D X \, dP = \int_D Z \, dP
\]

Proposition 4.4. Assume \(X, XZ \) are integrable random variables with \(Z \) \(D \)-measurable and \(D \subset \sigma \). Then:

a. \(E(ZX|D) = ZE(X|D) \)

b. \(\int_\Omega ZX \, dP = \int_\Omega ZE(X|D) \, dP \)
Proof. $a \rightarrow b$ is immediate since Ω is always in a sigma-field. To prove a, we apply the usual argument when developing Lebesgue integrals of functions. Firstly, suppose $Z = 1_{D'}$ where $D, D' \in \mathcal{D}$. Then since $D \cap D' \in \mathcal{D}$:

$$\int_D 1_{D'} X \, dP = \int_{D \cap D'} X \, dP = \int_{D \cap D'} E(X|\mathcal{D}) \, dP = \int_D 1_{D'} E(X|\mathcal{D}) \, dP$$

By linearity, a holds when Z is simple and a holds for non-negative Z by the monotone convergence theorem. For general Z, a holds once we write $Z = Z^+ - Z^-$.

\[\Box \]

Note 4.5. If $X_1 \leq X_2$ almost surely, then $E(X_1|\mathcal{D}) \leq E(X_2|\mathcal{D})$ almost surely. Hence if $X_1 = X_2$ almost surely, then $E(X_1|\mathcal{D}) = E(X_2|\mathcal{D})$ almost surely.

The convergence theorems for random variables apply for conditional expectations.

Theorem 4.6. Let $\mathcal{D} \subset^\sigma F$. Then:

a (MCT) Let X_n be non-negative random variables increasing to an r.v. X with $E(X) < \infty$. Then $E(X_n|\mathcal{D}) \uparrow E(X|\mathcal{D})$ almost surely.

b (Fatou’s Lemma) Let $X_n \geq 0$ be integrable, and $\liminf X_n$ be integrable. Then $E(\liminf X_n|\mathcal{D}) \leq \liminf E(X_n|\mathcal{D})$ almost surely.

c (DCT) Assume $X_n \rightarrow X$ almost surely, where $|X_n| \leq Y$ and $E(Y) < \infty$ for some random variable Y. Then $E(X_n|\mathcal{D}) \rightarrow E(X|\mathcal{D})$ almost surely.

Proof. a We have, almost surely, that $E(X|\mathcal{D}) \geq E(X_{n+1}|\mathcal{D}) \geq E(X_n|\mathcal{D})$ for all n. Let D' be the set of ω for which this property holds ($P(D') = 1$), and $U(\omega) = \lim_{n \rightarrow \infty} E(X_n|\mathcal{D})(\omega)1_{D'}(\omega)$. Each $E(X_n|\mathcal{D})1_{D'}(\omega)$ is also a conditional expectation since $E(X_n|\mathcal{D})1_{D'}(\omega) = E(X_n|\mathcal{D})$ almost surely. Next, $E(X_n|\mathcal{D}) \uparrow U$ pointwise by definition, means that for $D \in \mathcal{D}$ and by the monotone convergence theorem:

$$\int_D E(X_n|\mathcal{D}) \, dP = \int_D X_n \, dP \rightarrow \int_D U \, dP = \int_D X \, dP$$

Hence, $U = E(X|\mathcal{D})$ almost surely, implies that $E(X_n|\mathcal{D}) \uparrow E(X|\mathcal{D})$ almost surely.

b The proofs of Fatou’s Lemma and the Dominated Convergence Theorem are analogous to those of the classical ones.

\[\Box \]

Now, we will examine what it means to condition on a random variable. Recall $E(X|Y)(\omega) = E(X|\sigma(Y))(\omega)$ where X, Y are random variables. Recall that $\sigma(Y) = \{Y^{-1}(B) : B \subset S\}$ if Y takes values in (S, S).

Proposition 4.7. Let $Y : (\Omega, F) \rightarrow (S, S)$ be a random vector. Then, a random variable Z is $\sigma(Y)$-measurable iff $Z = \phi(Y)$ for some measurable function $\phi : (S, S) \rightarrow (\mathbb{R}, B(\mathbb{R}))$.

Proof. (\leftarrow) is trivial since Y is $\sigma(Y)$-measurable.

For (\rightarrow), let $D \in \sigma(Y)$. Then $D = Y^{-1}(B)$ for some $B \in S$. Hence, $1_D = 1_B(Y)$. We will construct ϕ using this observation.

Firstly, suppose Z be $\sigma(Y)$-measurable and simple. That is, let $Z = \sum_{i=1}^N \alpha_i 1_{B_i}$. By observation, $Z = \sum_{i=1}^N \alpha_i 1_{B_i}(Y) = \phi(Y)$, where $\phi(y) = \sum_{i=1}^N \alpha_i 1_{B_i}(y)$.

4
Now let $Z \geq 0$. Take $\{Z_n\}$ as a sequence of discrete skeletons converging to Z, where each Z_n are $\sigma(Y)$-measurable. By the previous case, there is a ϕ_n such that $Z_n = \phi_n(Y)$ for each n. Redefine, $\tilde{Z}_n = \max_{k \leq n} Z_k = \max_{k \leq n} \phi_k(Y) = \tilde{\phi}_n(Y)$. Then $\tilde{\phi}_n$ increase pointwise to a measurable map $\tilde{\phi}$ satisfying $Z = \tilde{\phi}(Y)$. Now, $\tilde{\phi}$ by take infinite values on a measure zero set so we get rid of those by redefining, $\phi(x) = \tilde{\phi}1_{\mathbb{R}}$ which also makes $Z = \phi(Y)$.

For the general case, let $Z \in \mathbb{R}$. Separate into positive and negative parts by $Z = Z^+-Z^-$. Setting $\phi(x) = \phi_+(x) - \phi_-(x)$ makes $Z = \phi(Y)$.

Note 4.7. If $\phi, \tilde{\phi} : (S, \mathcal{S}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are two such maps satisfying $\phi(Y) = Z, \tilde{\phi}(Y) = Z$, then $\phi = \tilde{\phi}$ P_Y-almost surely. That is, $P_Y(\phi \neq \tilde{\phi}) = P(\phi(Y) \neq \tilde{\phi}(Y)) = 0$.

Definition 3. Let $Y : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and X be an integrable random variable. Then $h(y) = E(X|Y = y)$ is the unique, up to P_Y-null sets map such that $h : (S, \mathcal{S}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ satisfies $h(Y) = E(X|Y)$.

Call $h(y)$, the conditional expectation of X given $\{Y = y\}$. When Y is a random variable with a probability density function function, we call $h(y)$ the **conditional density**. For instance, if X, Y are real valued, then we claim that:

$$E(X|Y = y) = \lim_{\epsilon \to 0} \frac{E(X1_{Y \in [y,y+\epsilon)})}{P(Y \in [y, y+\epsilon])}$$

for almost every y.

This was proved in 419.