1. Consider a Markov chain \(X \) defined on the canonical product space \((S^\mathbb{Z}_+, S^\mathbb{Z}_+\)) with general state space \((S, S)\) and transition probability \(p \). Recall that if \(f \) is a bounded measurable function on \(S \), then \(Gf(x) = \int f(y)p(x, dy) - f(x) = E_x(f(X_1)) - f(x) \). \(G \) is called the generator of \(X \). We say \(h \) is a harmonic function on a set \(D \) in \(S \) if \(Gh(x) = 0 \) for \(x \in D \).

 (a) If \(h \) is a bounded harmonic function on \(S \) prove that \(h(X_n) \) is an \((\mathcal{F}_n^X)\)-martingale with respect to every \(P_x \).

 (b) If \(A \in S \) and \(h \) is a bounded function on \(S \) which is harmonic on \(A^c \), show that \(h(X(n \wedge \tau_A)) \) is an \((\mathcal{F}_n^X)\)-martingale with respect to every \(P_x \). Here \(\tau_A = \inf\{n \geq 0 : X_n \in A\} \leq \infty \).

 (c) Let \(A \in S \) satisfy \(P_x(\tau_A < \infty) = 1 \) for every \(x \in S \). Let \(f : A \to \mathbb{R} \) bounded and measurable. Prove that \(h(x) = E_x(f(X(\tau_A))) \) is the unique bounded function on \(S \) which is harmonic on \(A^c \) and equals \(f \) on \(A \).

 \textbf{Hint:} Consider \(\Phi(X_0, X_1, X_2, \ldots) = f(X_{\tau_A}) \). If \(x \in A^c \), under \(P_x \), what is \(\Phi(X_1, X_2, \ldots) \)?

2. If \(P \) is an \(N \times N \) (\(N \) finite) stochastic matrix, prove that all eigenvalues of \(P \) are in \([-1, 1]\), and so conclude that 1 is the largest eigenvalue of \(P \).

3. Consider the \(\{1, 2\} \)-valued Markov chain \(X_n \) with transition matrix

\[
P = \begin{bmatrix}
1 - \alpha & \alpha \\
\beta & 1 - \beta
\end{bmatrix},
\]

where of course \(\alpha, \beta \in [0, 1] \).

 (a) Diagonalize the transition matrix \(P \) and then find \(P_\mu(X_n = 1) \) for any \(n \) and i.d. \(\mu \).

 (b) If \(2 > \alpha + \beta \) use the above to find \(\lim_{n \to \infty} P_\mu(X_n = 1) \) for any i.d. \(\mu \). What happens if \(\alpha + \beta = 2 \)?
4. Consider the Markov Chain with state space \{1, 2, 3\} and transition matrix

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
1 - p & 0 & p \\
0 & 1 & 0
\end{bmatrix}
\]

Here \(p \in [0, 1]\).

(a) Verify that \(P = P^3\).

(b) Find \(P^n\) for all \(n \in \mathbb{N}\).

(c) If \(\{X_n\}\) is the Markov Chain with transition matrix \(P\) and initial distribution \(\mu\) satisfying \(\mu(1) = \mu(3) = 1/4\) and \(\mu(2) = 1/2\), find \(P(X_n = 1)\) for all \(n \in \mathbb{Z}_+\).