1. The Original Martingale
Let \(\{Y_k, k \in \mathbb{N}\} \) be iid r.v.’s where \(P(Y_k = 1) = P(Y_k = -1) = \frac{1}{2} \) let \(\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n) \) (\(\mathcal{F}_0 = \{\emptyset, \Omega\} \)), and let \(S_n = \sum_{k=1}^{n} Y_k \). \(Y_k \) is the outcome of the \(k \)th play of a fair game. A gambler uses the following strategy: Bet $1 that the first play is a 1, if you win, quit. If not double your bet on a 1 occurring on the next play. That is bet $2 that the next play is 1. Continue this way until you finally win. You can assume that the gambler can borrow as much money as they need. Let \(X_n \) be the gambler’s fortune after \(n \) plays of the game (of course the gambler may have quit betting well before \(n \) plays).

(a) Show that there is an \((\mathcal{F}_n)\)-predictable process \(H \) where \(0 \leq H_n \leq K_n \) for some constant \(K_n \) and \(X_n = (H \cdot S)_n \), and conclude that \(X \) is an \((\mathcal{F}_n)\)-martingale.

(b) Show there is an integrable r.v. \(X_\infty \) s.t. \(X_n \to X_\infty \) a.s. and identify \(X_\infty \).

(c) Show that \(L^1 \) convergence fails in (b) above.

2. Let \(X, Y \) be r.v.s with joint density \(f(x, y) \). Recall that the marginal density of \(Y \) is then \(f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx \). Define the conditional density of \(X \) given \(Y = y \) by

\[
 f_{X|Y}(x|y) = \begin{cases}
 \frac{f(x, y)}{f_Y(y)} & \text{if } f_Y(y) \neq 0, \\
 0 & \text{if } f_Y(y) = 0.
\end{cases}
\]

(a) Show that \(x \to f_{X|Y}(x|y) \) is a probability density for \(P_Y \)-a.a. \(y \).

(b) If \(g : \mathbb{R} \to \mathbb{R} \) is a Borel function with \(g(X) \) integrable, show that \(E(g(X)|Y = y) = \int g(x) f_{X|Y}(x|y) \, dx \) for \(P_Y \) - a.a. \(y \).

3. Let \(\phi \) be a non-negative Borel-measurable function on \(\mathbb{R}_+ \) s.t. \(\lim_{x \to \infty} \frac{\phi(x)}{x} = \infty \). If \(\sup_{i \in I} E(\phi(|X_i|)) < \infty \), show that \(\{X_i : i \in I\} \) is uniformly integrable. Conclude that if for some \(p > 1 \), \(\{X_i : i \in I\} \) is \(L^p \)-bounded then \(\{X_i : i \in I\} \) is uniformly integrable.
4. Assume \(\{Y_k: k \in \mathbb{N}\} \) are iid r.v.'s with mean 0 and finite variance \(\sigma^2 \).
Let \(S_n = \sum_{k=1}^{n} Y_k \) \((S_0 = 0)\) and \(\mathcal{F}_n = \mathcal{F}^Y_n \). Show that \(X_n = S^2_n \) is an \((\mathcal{F}_n)\)-submartingale and find its Doob decomposition. Here you should give an explicit formula for the increasing predictable process in this decomposition and simplify as much as possible.

5. Assume \(\{X_n\} \) is a non-negative supermartingale such that for some real number \(\delta > 0 \), w.p.1 for all \(n \geq 0 \), either \(X_{n+1} = X_n \) or \(|X_{n+1} - X_n| \geq \delta \).
(So \(X_n \) is your fortune after \(n \) plays where there is a minimum bet size.)
Let \(T = \sup\{n : |X_n - X_{n-1}| \geq \delta\} \in \mathbb{Z}_+ \cup \{\infty\} \) be the time of the last bet. Prove that \(P(T < \infty) = 1 \) and \(E(X_T) \leq E(X_0) \). That is, there is a last bet and on average you won't win.