Math 418/544 Proof of Thm. 3.3

We only need to prove d)⇒e). Assume ∀A ∊ B(S) P(∂A) = 0 implies P_n(A) → P(A).
Let f : S → ℝ be bounded Borel s.t. P(D_f) = 0. We must show

\[\lim_{n \to \infty} \int f dP_n = \int f dP. \] (1)

Lemma. If f : S → ℝ and A ⊂ ℝ, then

(a) \(f^{-1}(A) \subset D_f \cup f^{-1}(\overline{A}) \)
(b) \(\partial(f^{-1}(A)) \subset D_f \cup f^{-1}(\partial A) \).

Proof. (a) Let \(x \in \overline{f^{-1}(A)} \cap D_f^c \). Then there is a sequence \(\{x_n\} \) in \(f^{-1}(A) \) s.t. \(x_n \to x \). As \(x \) is a continuity point of \(f \) we have \(f(x_n) \to f(x) \), and since \(f(x_n) \in A \), it follows that \(f(x) \in \overline{A} \). This proves \(x \in f^{-1}(\overline{A}) \), and (a) follows.

(b) \(\partial f^{-1}(A) = f^{-1}(A) \cap f^{-1}(A^c) = f^{-1}(A) \cap f^{-1}(\overline{A}) \). Now use (a) on each of these sets to conclude that

\(\partial f^{-1}(A) \subset (D_f \cup f^{-1}(\overline{A})) \cap (D_f \cup f^{-1}(\overline{A})) = D_f \cup (f^{-1}(\overline{A} \cap \overline{A})) = D_f \cup f^{-1}(\partial A) \).

\(\square \)

For each natural number \(k \) choose real numbers \(x_1^k < \cdots < x_N^k \) so that

(A) \(\text{Range}(f) \subset [x_1^k, x_N^k] \),
(B) \(x_{i+1}^k - x_i^k < 2^{-k} \) for all \(i \),
and (C) \(P(f^{-1}(\{x_i^k\})) = 0 \) for all \(i \).

The latter condition is easy to satisfy since we only need to avoid the countable set of points for which \(P(f^{-1}(\{x\})) > 0 \). Let \(A_i^k = f^{-1}([x_i^k, x_{i+1}^k]) \) for \(i = 1, \ldots, N_k - 1 \) and define

\(f_k = \sum_{i=1}^{N_k-1} x_i^k 1_{A_i^k} \). Then conditions (A) and (B) imply that \(\|f - f_k\|_\infty \leq 2^{-k} \). We also have by (b) of the Lemma and our assumption that \(P(D_f) = 0 \),

\[P(\partial A_i^k) = P(\partial f^{-1}([x_i^k, x_{i+1}^k])) \leq P(D_f \cup f^{-1}(\{x_i^k, x_{i+1}^k\})) = 0, \]

the last by condition (C). It follows by hypothesis that \(\lim_{n \to \infty} P(A_i^k) = P(A_i^k) \) for all \(i, k \) and hence that for all \(k \),

\[\lim_{n \to \infty} \int f_k dP_n = \lim_{n \to \infty} \sum_{i=1}^{N_k-1} P_n(A_i^k) = \int f_k dP. \]

The uniform convergence of \(f_k \) to \(f \) therefore shows that for any fixed \(k \),

\[\limsup_{n \to \infty} \left| \int f dP_n - \int f dP \right| \leq \limsup_{n \to \infty} \left[\left| \int f - f_k dP_n \right| + \left| \int f_k dP_n - \int f_k dP \right| + \left| \int f_k - f dP \right| \right] \]
\[\leq 2^{-k} + 0 + 2^{-k} = 2^{1-k}. \]

As \(k \) can be taken arbitrarily large, (1) follows.