Monotone Convergence Theorem 1.17

If \(x_{n \downarrow} \) are e.v.s s.t. \(x_{n \downarrow} \leq x \) for all \(n \), then \(\int x \, d\mu \geq \lim \int x_n \, d\mu \).

Proof: We saw in class that \(\int x_n \, d\mu \leq \int x \, d\mu \).

Consider the reverse inequality. Let \(0 < b \leq 1 \). Fix \(k \in \mathbb{N} \).

Recall \(x^{(k)} \) is the \(k \)-th discrete skeleton of \(x \).

Let \(B_n = \{ \omega : x_n(\omega) \geq b \} \cap B_n \) be an \(\mathcal{F}_n \)-measurable set. \(B_n \) is also \(\mathcal{B} \)-measurable.

Claim 1: \(B_n \) is \(\mathcal{B} \)-measurable, i.e., \(\mu(B_n) = 2 \).

Case 1: \(x(\omega) = 0 \). Then \(x^{(k)}(\omega) = 0 \) so \(\omega \in B_n \) for all \(n \).

Case 2: \(x(\omega) > 0 \). Then \(x_n(\omega) \geq b \) for \(n \) large enough, \(x^{(k)}(\omega) \geq b \) so \(\omega \in B_n \).

So \(\mu(B_n) = 2 \) for all \(n \).

Lemma (1.11): \(\int B_n \, d\mu = \int x^{(k)} \, d\mu \)

Since \(1_{B_n} x_n \geq 1_{B_n} b x^{(k)} \),

\[
\int 1_{B_n} x_n \, d\mu \geq \int 1_{B_n} b x^{(k)} \, d\mu = b \int 1_{B_n} x^{(k)} \, d\mu
\]

where \(x^{(k)} = \frac{1}{k} \sum x_i \).

\[
\Rightarrow 0 = \lim_{n \to \infty} \mu(A_n \cap B_n) = \mu(A_n)
\]

(\(\mu \) is countably increasing sequence of sets)

\[
\Rightarrow L = \lim_{n \to \infty} \int x_n \, d\mu = b \sum_{i=1}^{\infty} x_i \mu(A_i) = b \int x^{(k)} \, d\mu
\]

Now let \(b \uparrow 1 \) and then \(k \to \infty \) to see \(L = \int x \, d\mu \).

\(\Box + \Box \Rightarrow L = \int x \, d\mu \). \(\square \)