1. Let X be a r.v. whose characteristic function ϕ_X satisfies $\int_{-\infty}^{\infty} |\phi_X(t)| \, dt < \infty$. Prove that X has a p.d.f. given by

$$f_X(x) = \int_{-\infty}^{\infty} (2\pi)^{-1/2} e^{-itx} \phi_X(t) \, dt.$$

2. This question demonstrates that continuity at zero of the limit of the characteristic functions is essential in Levy’s continuity theorem.

Let X_n have a uniform distribution on $[-n,n]$, for $n \in \mathbb{N}$.

(a) Prove that the characteristic functions $\{\phi_{X_n}\}$ converge pointwise to a function ϕ which is discontinuous at $t = 0$ and find ϕ.

(b) Prove that X_n does not converge weakly to any random variable.

3. Let P_n converge weakly to P in $M_1(\mathbb{R})$. Let F_n and F be the distribution functions corresponding to P_n and P, respectively. If P is atomless (i.e. $P(\{x\}) = 0$ for all x), prove that

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| = 0.$$

4. Assume $\{Y_n, n \in \mathbb{N}\}$ are iid random variables with density function $f(x) = e^{-x}1(x \geq 0)$. Let $X_n = \max(Y_1,Y_2,\ldots,Y_n)$. Prove that $\lim_{n \to \infty} \frac{X_n}{\log n} = 1$ a.s. You may use Q8 on HW 5 if it helps.