Math 418/544 Assignment 5 Due Wed. Nov. 14

1. Let \(\{ X_n \} \) be a sequence of uncorrelated r.v.'s with common \(\mu \) such that \(\sup_n \text{Var}(X_n) < \infty \). If \(S_n = \sum_{k=1}^{n} X_k \), show that \(n^{-2} \sum_{k=1}^{n} S_k \) converges in probability as \(n \to \infty \) and identify the limit.

2. In this question you should do all 3 parts but only hand in (c).
 (a) Show that \(d(X, Y) = E(|X - Y| \wedge 1) \) defines a metric on the space of r.v.'s on a given probability space, where we identify r.v.'s \(X \) and \(Y \) if \(X = Y \) a.s.
 (b) Show that \(d(X_n, X) \to 0 \) iff \(X_n \to X \) in probability.
 (c) Show that the metric \(d \) is complete. That is if \(d(X_m, X_n) \to 0 \) as \(m, n \to \infty \), prove that there is a r.v. \(X \) so that \(d(X, X_n) \to 0 \) as \(n \to \infty \).

3. Let \(f : [0, 1] \to \mathbb{R} \) be an \(\alpha \)-Hölder function for some \(\alpha \in (0, 1] \), that is, for some constant \(L > 0 \), \(|f(x) - f(y)| \leq L|x - y|^{\alpha} \) for all \(x, y \in [0, 1] \). If \(p_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^{k}(1-x)^{n-k} f(k/n) \) is the \(n \)th Bernstein polynomial of \(f \), prove that \(\|f - p_n\|_{\infty} \leq C n^{-\alpha/2} \), where \(C \) depends only on \(L \) and \(\alpha \).

4. Let \(\{ X_n \} \) be iid exponential r.v.'s with rate \(\lambda > 0 \). Find the density of \(X_1 + \cdots + X_n \) by inductively calculating the \(n \)-fold convolution of \(f \) with itself where \(f \) is the density of \(X_1 \).

5. A sequence of reals \(\{ x_j \} \) in \([0, 1] \) is said to be uniformly distributed iff for every \(a < b \) in \([0, 1] \),
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} 1_{(a,b)}(x_j) = b - a.
 \]
 Prove that such a sequence exists.
 Hint. Show that it suffices to show the above result holds for rational values of \(a \) and \(b \).

6. Practice Questions (not to hand in):
 (a) p. 72 #2.3.13, p. 77 #2.4.3
 (b) Assume \(Y \) is a non-negative r.v. such that \(E(Y^2) < \infty \). Prove that
 \[
 P(Y > 0) \geq E(Y^2)/E(Y^2).
 \]
 Hint: One approach is to apply Hölder’s inequality \(p = q = 1/2 \) to \(Y1(Y > 0) \).
(c) Let X_1, \ldots, X_n be random variables such that the distribution function of $X = (X_1, \ldots, X_n)$ can be factored as $F_X(x_1, \ldots, x_n) = \prod_{i=1}^{n} G_i(x_i)$ for some non-negative Borel functions G_i. Does this imply that X_1, \ldots, X_n are independent r.v.s? Prove or provide a counter-example.