Math 418/544 Assignment 4 Due Wed. Nov. 9 at start of class

1. Let \(\{X_n\} \) be a sequence of uncorrelated r.v.’s with common \(\mu \) such that \(\sup_n \text{Var}(X_n) < \infty \). If \(S_n = \sum_{k=1}^{n} X_k \), show that \(n^{-2} \sum_{k=1}^{n} S_k \) converges in probability as \(n \to \infty \) and identify the limit.

2. (a) Show that \(d(X, Y) = E(|X - Y| \wedge 1) \) defines a metric on the space of r.v.’s on a given probability space, where we identify r.v.’s \(X \) and \(Y \) if \(X = Y \) a.s.

(b) Show that \(d(X_n, X) \to 0 \) iff \(X_n \to X \) in probability.

(c) Show that the metric \(d \) is complete. That is if \(d(X_m, X_n) \to 0 \) as \(m,n \to \infty \), prove that there is a r.v. \(X \) so that \(d(X_n, X) \to 0 \) as \(n \to \infty \).

3. Let \(f : [0, 1] \to \mathbb{R} \) be an \(\alpha \)-Hölder function for some \(\alpha \in (0, 1] \), that is, for some constant \(L > 0 \), \(|f(x) - f(y)| \leq L|x - y|^\alpha \) for all \(x, y \in [0, 1] \). If \(p_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f(k/n) \) is the \(n \)th Bernstein polynomial of \(f \), prove that \(\|f - p_n\|_\infty \leq C n^{-\alpha/2} \), where \(C \) depends only on \(L \) and \(\alpha \).

4. Let \(\{X_n\} \) be iid exponential r.v.’s with rate \(\lambda > 0 \). Find the density of \(X_1 + \cdots + X_n \) by inductively calculating the \(n \)-fold convolution of \(f \) with itself where \(f \) is the density of \(X_1 \).

5. A sequence of reals \(\{x_j\} \) in \([0, 1] \) is said to be uniformly distributed iff for every \(a < b \) in \([0, 1] \),

\[
\lim_{n \to \infty} \left[\frac{\sum_{j=1}^{n} \mathbb{1}_{(a, b]}(x_j)}{n} \right] = b - a.
\]

Prove that such a sequence exists.

Hint. Show that it suffices to show the above result holds for rational values of \(a \) and \(b \).

6. Practice Questions (not to hand in):

 (a) p. 72 #2.3.13, p. 77 #2.4.3

 (b) Assume \(Y \) is a non-negative r.v. such that \(E(Y^2) < \infty \). Prove that

\[
P(Y > 0) \geq E(Y^2)/E(Y^2).
\]

Hint: One approach is to apply Hölder’s inequality \((p = q = 1/2)\) to \(Y^1(Y > 0) \).

(c) (Extension of the Second Borel-Cantelli Lemma) Assume \(\{A_n\} \) are events such that \(\sum_{n=1}^{\infty} P(A_n) = \infty \). Let

\[
\alpha = \lim \sup_{n \to \infty} \frac{(\sum_{j=1}^{n} P(A_j))^2}{\sum_{j,k=1}^{n} P(A_j \cap A_k)}.
\]

i. Show that \(\alpha \leq 1 \).

ii. Use (b) to show that \(P(A_n \text{ i.o.}) \geq \alpha \).

iii. Show that \(\alpha = 1 \) if \(A_j \) and \(A_k \) are independent events whenever \(|j - k| > N \) for some non-negative integer \(N \), hence extending the second Borel Cantelli Lemma.