Math 418/544 Assignment 3 Due Wed. Oct. 26 at start of class

1. Let \(X \) be a non-negative r.v. with mean 0. Use Markov’s inequality to show that \(X = 0 \) a.s.

2. If \(Y \) is a non-negative r.v. show that for any \(p > 0 \), \(E(Y^p) = \int_0^\infty px^{p-1}P(Y \geq x)dx \).
 \textbf{Hint:} \(y^p = \int_y^\infty px^{p-1}dx \).

3. (a) For a fixed \(x > 0 \) show there is a non-constant r.v. so that \(P(|X - \mu| \geq x) = \sigma^2/x^2 \), i.e., equality holds in Chebychev’s inequality. (Here \(\mu \) and \(\sigma^2 \) are the mean and variance of \(X \).)
 (b) Show there is no non-constant r.v. with finite mean so that equality holds in Chebychev’s inequality for all \(x > 0 \).

4. Use Jensen’s inequality to show that for any r.v., \(X \), on \((\Omega, \mathcal{F}, P) \), the function \(p \to \|X\|_p = \infty \) is a monotone increasing function on \((0, \infty) \). Here \(\|X\|_p = \left[\int |X|^p dP \right]^{1/p} \).

5. Let \(X, Y \) and \(Z \) be independent r.v.’s with a uniform distribution on \([0, 2]\). Find:
 (a) the joint p.d.f. of \((X, Y)\) (b) \(P(X + Y \leq 1) \) (c) \(P(X + Y \leq Z) \)
 (d) the p.d.f of \(X/Y \).

6. Give an example of events \(A_1, A_2 \) and \(A_3 \) on a probability space \((\Omega, \mathcal{F}, P)\) such that \(0 < P(A_i) < 1 \) for all \(i \), \(P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3) \), but \(A_1 \) and \(A_2 \) are not independent events.

7. Let \(X_1, \ldots, X_n \) be random variables such that the distribution function of \(X = (X_1, \ldots, X_n) \) can be factored as \(F_X(x_1, \ldots, x_n) = \prod_{i=1}^n G_i(x_i) \) for some non-negative Borel functions \(G_i \). Does this imply that \(X_1, \ldots, X_n \) are independent r.v.s? Prove or provide a counter-example.
 \textbf{Hint:} Consider \(n = 2 \) first.

8. Practice Questions (not to hand in): p.34 #1.6.6, p. 45 #2.1.5

Hölder’s inequality states that if \((\Omega, \mathcal{F}, \mu)\) is a measure space, \(\infty > p, q > 1 \) satisfy \(p^{-1} + q^{-1} = 1 \), and \(|f|^p \) and \(|g|^q \) are integrable, then \(fg \) is \(\mu \)-integrable and
\[
\left| \int fg \, d\mu \right| \leq \left[\int |f|^p \, d\mu \right]^{1/p} \left[\int |g|^q \, d\mu \right]^{1/q} \equiv \|f\|_p \|g\|_q.
\]
Prove this using Jensen’s inequality. One approach is to consider the probability \(P(A) = \int 1_A |f|^p \, d\mu [\int |f|^p \, d\mu]^{-1} \) (we may assume wlog that \(\int |f|^p \, d\mu > 0 \)–why is this?) and write \(\int |f||g|d\mu \) as an integral w.r.t. \(P \). (You may assume \(P \) is a probability, as this follows from our proof of Lemma 1.23.)