1. Let \mathcal{F}_0 be the field of finite disjoint unions of right semiclosed intervals on \mathbb{R}. (Recall this was denoted by \mathcal{U}_1 in class.) Define $\mu : \mathcal{F}_0 \to [0, 1]$ by

$$
\mu(A) = \begin{cases}
1 & \text{if } [x, \infty) \subset A \text{ for some } x > 0, \\
0 & \text{otherwise.}
\end{cases}
$$

Prove that μ is a finitely additive probability on $(\mathbb{R}, \mathcal{F}_0)$ but is not a probability measure on $(\mathbb{R}, \mathcal{F}_0)$.

2. Let $F : \mathbb{R}^d \to [0, 1]$ be a d-dimensional distribution function, i.e.,

(i) For any $a \leq b$ in \mathbb{R}^d, $\Delta_{(a,b]} F = F(x_1, \ldots, x_d) |_{x_1=a_1}^{b_1} \cdots |_{x_d=a_d}^{b_d} \geq 0.$ (Or see p. 14 of the text for an equivalent definition of $\Delta_{(a,b]} F$.)

(ii) $\lim_{z \downarrow x} F(z) = F(x)$ for all x (this means $z_i > x_i$ in taking the limit).

(iii) For any $j = 1, \ldots, d$, and any $(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d) \in \mathbb{R}^{d-1}$,

$$
\lim_{x_j \downarrow -\infty} F(x_1, x_2, \ldots, x_d) = 0,
$$

and $\lim_{x \to \infty} F(x) = 1$, where $x \to \infty$ means each coordinate $x_j \to \infty$.

Prove that $F(x_1, \ldots, x_d)$ is non-decreasing in each variable x_i.

3. Give an example of a function $F : \mathbb{R}^2 \to [0, 1]$ such that ((b) and (c) below are just the 2-dimensional versions of (ii) and (iii), respectively)

(a) $F(x, y)$ is non-decreasing in x and in y.

(b) $\lim_{(x', y') \downarrow (x, y)} F(x', y') = F(x, y)$.

(c) $\lim_{x \to \infty, y \to \infty} F(x, y) = 1$, $\lim_{x \downarrow -\infty} F(x, y) = 0$ for all y, and $\lim_{y \downarrow -\infty} F(x, y) = 0$ for all x,

but F is not a two-dimensional distribution function. This, together with Q2, shows (a)-(c) are strictly weaker than (i)-(iii) in general.

Read Section 1.2.

4. If F, G are distribution functions on the line, we say F is stochastically smaller than G and write $F \prec G$ iff $G(x) \leq F(x)$ for all $x \in \mathbb{R}$ (yes it is correct!).

(a) Suppose X, Y are random variables on (Ω, \mathcal{F}, P) such that $P(X \leq Y) = 1$. Prove that $F_X \prec F_Y$. Here $F_X(x) = P(X \leq x)$ is the distribution function of X.

(b) Suppose $F \prec G$ (F and G are distribution functions). Show there are random variables X, Y on some probability space (Ω, \mathcal{F}, P) such that $F_X = F$, $F_Y = G$ and $P(X \leq Y) = 1$.

5. Practice Questions (not to hand in): p.12-13 #1.2.4, #1.2.5, #1.2.7; p. 16 #1.3.5, #1.3.6