1. Prove Lemma 0.6. That is, show that if \(C = \{ \omega \in \Omega : \lim_n S_n(\omega)/n = 1/2 \} \) and \(\hat{C} = \{ \omega \in \Omega : \lim_m S_m^2(\omega)/m^2 = 1/2 \} \), then \(\hat{C} = C \). Recall that \(\Omega = \{0,1\}^N \) and \(S_n(\omega) = \sum_{k=1}^n \omega_k \).

2. (a) If \(\{F_n : n \in \mathbb{N}\} \) is an increasing sequence of fields of a set \(\Omega \), prove that \(\bigcup_{n=1}^\infty F_n \) is also a field.

(b) Show by counterexample, say with \(\Omega = \mathbb{N} \), that the result in (a) is false if “field” is replaced everywhere by “\(\sigma \)-field”.

3. (a) If \(\Omega = \{1,2,3,4\} \) and \(\mathcal{F} = 2^{\{1,2,3,4\}} \), give an example of two distinct probabilities \(P_1 \) and \(P_2 \) on \((\Omega, \mathcal{F}) \) that agree on a collection of sets \(\mathcal{C} \) satisfying \(\sigma(\mathcal{C}) = \mathcal{F} \).

(b) Let \((\Omega, \mathcal{F}) \) be a measurable space and \(\mathcal{C} \subset \mathcal{F} \) be closed under finite unions and satisfy \(\sigma(\mathcal{C}) = \mathcal{F} \). Prove that if two probabilities agree on \(\mathcal{C} \), then they agree on \(\mathcal{F} \).

(c) Does the result in (b) continue to hold if \(\mathcal{C} \) is closed under complementation rather than finite unions? Prove your answer or provide a counter-example.

4. Read Section 1.2 in the text.

If \(F, G \) are distribution functions on the line, we say \(F \) is stochastically smaller than \(G \) and write \(F \prec G \) iff \(G(x) \leq F(x) \) for all \(x \in \mathbb{R} \) (yes it is correct!).

(a) Suppose \(X, Y \) are random variables on \((\Omega, \mathcal{F}, P) \) such that \(P(X \leq Y) = 1 \). Prove that \(F_X \prec F_Y \). Here \(F_X(x) = P(X \leq x) \) is the distribution function of \(X \).

(b) Suppose \(F \prec G \) (\(F \) and \(G \) are distribution functions). Show there are random variables \(X, Y \) on some probability space \((\Omega, \mathcal{F}, P) \) such that \(F_X = F, F_Y = G \) and \(P(X \leq Y) = 1 \).