Some Notes on Subsequences and Limsup

We start with the completion of the proof of

Theorem 5.4. If \(x_n \) is a real-valued sequence, then \(\liminf_{n \to \infty} x_n = \min L(\{x_N\}) \) and \(\limsup_{n \to \infty} x_n = \max L(\{x_N\}) \).

Proof We were considering \(\bar{L} = \limsup x_n \) and had reduced the result to showing that \(\limsup_{n \to \infty} x_n \in L(\{x_N\}) \). If \(\bar{L} = \pm \infty \) we also had completed the proof. So consider \(\bar{L} \) real-valued which was left as an exercise in class.

First we show that

(1) \(\forall \varepsilon > 0 \ \exists N \) there is a natural number \(n > N \) so that \(|x_n - \bar{L}| < \varepsilon \).

Since \(\bar{x}_n \downarrow \bar{L} \), there is a natural number \(N_1 \) such that \(n \geq N_1 \) implies \(|\bar{x}_n - \bar{L}| < \varepsilon /2 \). We may assume wlog that \(N_1 > N \). Since \(\bar{x}_{N_1} = \sup \{x_n : n \geq N_1\} \), there is a natural number \(n \geq N_1 > N \) so that \(x_n > \bar{x}_{N_1} - \varepsilon /2 \) (otherwise \(\bar{x}_{N_1} - \varepsilon /2 \) would be an upper bound for \(\{x_n : n \geq N_1\} \)). Therefore \(n > N \) and

\[
|x_n - \bar{L}| \leq |x_n - \bar{x}_{N_1}| + |\bar{x}_{N_1} - \bar{L}| < \bar{x}_{N_1} - x_n + \varepsilon /2 < \varepsilon.
\]

This proves (1).

Now inductively define \(n_1 < n_2 < \ldots < n_k < \ldots \) so that \(|x_{n_k} - \bar{L}| < 1/k \) for all \(k \). By (1) with \(N = 1 \) and \(\varepsilon = 1 \) we may pick \(n_1 \) so that \(|x_{n_1} - \bar{L}| < 1 \). Given \(n_1 < \ldots < n_k \) satisfying the above, apply (1) with \(N = n_k \) and \(\varepsilon = 1/(k+1) \) to find \(n_{k+1} > n_k \) so that \(|x_{n_{k+1}} - \bar{L}| < 1/(k+1) \). This completes the inductive construction of \(\{x_{n_k}\} \). Clearly \(x_{n_k} \to \bar{L} \), proving \(\bar{L} \in L(\{x_n\}) \), as required.

Example 1. Let \(Q \cap (1,2) = \{r_n : n \geq 1\} \) where \(r_m \neq r_n \) if \(m \neq n \). Claim \(L(\{r_n\}) = [1,2] \).

If \(x \in L(\{r_n\}) \), then there are \(r_{n_k} \) so that \(r_{n_k} \to x \). As \(r_{n_k} \in (1,2) \), this implies \(x \in (1,2) = [1,2] \) and so \(L(\{r_n\}) \subset [1,2] \).

Next fix \(x \in [1,2] \). To show \(x \in L(\{r_n\}) \) we need to find \(r_{n_k} \to x \). For this note that if \(\varepsilon > 0 \) and \(N > 0 \), \((x - \varepsilon, x + \varepsilon) \cap \{r_n : n \geq 1\} \) is an infinite set and so

(2) there is an \(n > N \) so that \(|r_{n_k} - x| < \varepsilon \).

Now proceed inductively to construct \(n_1 < n_2 < \ldots < n_k < \ldots \) so that for all \(k \) \(|r_{n_k} - x| < 1/k \). This is clearly possible for \(k = 1 \) by the above. Assume we have \(n_1 < n_2 < \ldots < n_k \) so that \(|r_{n_j} - x| < 1/j \) for \(j \leq k \). By (2) we may choose \(n_{k+1} > n_k \) so that \(|r_{n_{k+1}} - x| < 1/(k+1) \). This completes the inductive construction. Clearly \(r_{n_k} \to x \) and so \(x \in L(\{r_n\}) \). This shows that the latter set contains \([1,2]\) and so the argument is complete.

So by Thm. 5.4 we see that \(\limsup r_n = \max [1,2] = 2 \) and \(\liminf r_n = \min [1,2] = 1 \), which you can also derive directly from the definitions of \(\limsup \) and \(\liminf \).

Example 2. Let \(x_n = (-1)^n (1 + n^{-1}) \). Find \(\limsup x_n \) and \(\liminf x_n \).

Note that \(x_{2n} = 1 + (2n)^{-1} \) and \(x_{2n+1} = -(1 + (2n - 1)^{-1}) \). Since \(x_{2n} \) is decreasing in \(n \) and \(x_{2n-1} < 0 \), it follows easily that \(\bar{x}_{2n} = \sup \{x_k : k \geq 2n\} = 1 + (2n)^{-1} \to 1 \), and so \(\limsup x_n = \lim_{n \to \infty} \bar{x}_n = \lim_{n \to \infty} \bar{x}_{2n} = 1 \). (The fact that \(\bar{x}_n \) converges means the limit may be obtained along the subsequence \(\bar{x}_{2n} \).) Similar reasoning gives \(\underline{x}_{2n-1} = -(1 + (2n - 1)^{-1}) \), and so \(\liminf x_n = \lim_{n \to \infty} \underline{x}_n = \lim_{n \to \infty} \underline{x}_{2n-1} = -1 \).