Q7(a) For all \(i \leq n \), \(A_i \subseteq B_n \) and so \(\bar{A}_i \subseteq \bar{B}_n \). Taking the union over \(i \) gives \(\bigcup_{i=1}^{n} \bar{A}_i \subseteq \bar{B}_n \). For the reverse inclusion note that \(\bigcup_{i=1}^{n} A_i \) is closed because it is a finite union of closed sets. So since it contains \(B_n = \bigcup_{i=1}^{n} A_i \), it will contain \(\bar{B}_n \).

(b) This is proved exactly as in the first part of (a).

Let \(A_i = [0, 1 - i^{-1}] \). Then \(B = \bigcup_{i=1}^{\infty} A_i = [0, 1] \) so \(\bar{B} = [0, 1] \). On the other hand \(\bigcup_{i=1}^{\infty} \bar{A}_i = \bigcup_{i=1}^{\infty} [0, 1 - i^{-1}] = [0, 1) \), which is a proper subset of \([0, 1] = \bar{B} \).

Q8. Yes. Let \(E \) be open and \(p \in E \). Choose \(r_0 > 0 \) so that \(N_{r_0}(p) \subseteq E \). Then for any \(0 < r \leq r_0 \), \(N_r(p) \cap E = N_r(p) \) which is infinite and so contains points other than \(p \). If \(r \geq r_0 \), the previous set is larger and so still contains points other than \(p \). This proves \(p \) is a limit point of \(E \).

If \(E \) is closed this is not necessarily true. Take \(E = \{ x_0 \} \) in any metric space (such as \(\mathbb{R}^2 \)). Then \(E \) is closed as we proved in class. But for any \(r > 0 \), \(N_r(x_0) \cap E = \{ x_0 \} \) contains no points in \(E \) other than \(x_0 \) and so \(x_0 \) is not a limit point of \(E \).

Q9 (d) \(p \in (E^c)^c \) iff \(\forall r > 0 \, N_r(p) \not\subseteq E \) iff \(\forall r > 0 \, N_r(p) \cap E^c \neq \emptyset \) iff \(p \in \overline{E^c} \).

(e) No. Consider \(E = \mathbb{Q} \) as a subset of the metric space \(\mathbb{R} \). Then \(\overline{\mathbb{Q}} = \mathbb{R} \) (recall \(\mathbb{Q} \) is dense in \(\mathbb{R} \) and so \(\mathbb{Q} \) has interior in \(\mathbb{R} \)). But \(\mathbb{Q} \) has empty interior. To see this assume \(p \in \mathbb{Q}^c \). Then there is an \(r \) so that \((p - r, p + r) \subseteq \mathbb{Q} \). But any non-empty open interval will contain an irrational (*) so this contradiction shows that \(\mathbb{Q} \) has empty interior.

(*)Proof. Let \((a, b) \) be non-empty. Choose a rational \(r \in (a/\sqrt{2}, b/\sqrt{2}) \). Then \(r\sqrt{2} \) is an irrational number (why?) in \((a, b) \).

(f) No. Take \(E = \mathbb{Q} \) again. By the above, \(\mathbb{Q}^c = \emptyset \) and so has empty closure, but \(\mathbb{Q} \) has closure equal to \(\mathbb{R} \).

Q11. \(d_1 \) is not a metric: \(d_1(0, 1) + d_1(1, 2) = 2 < 4 = d_1(0, 2) \), so the triangle \(\leq \) fails.

\(d_2 \) is a metric. Clearly \(d_2 \) is symmetric and \(d_2(x, y) = 0 \) iff \(x = y \). Finally,

\[
(\sqrt{d_2(x, z)} + \sqrt{d_2(y, z)})^2 \geq d_2(x, y)^2 + d_2(y, z)^2 = |x - y| + |y - z| \geq |x - z| = d_3(x, z)^2,
\]

and take square roots of both sides to prove the triangle inequality.

\(d_3 \) is not a metric. \(d_3(1, -1) = 0 \) but \(1 \neq -1 \).

\(d_4 \) is not a metric. \(d_4(2, 1) = 0 \) but \(1 \neq 2 \).

\(d_5 \) is a metric. Symmetry of \(d_5 \) is obvious as is \(d_5(x, y) = 0 \) iff \(x = y \). Note that \(f(x) = \frac{x}{\sqrt{1 + x}} \) is an increasing concave down \((f' \text{ is decreasing}) \) function on \([0, \infty) \). This shows that for \(x, y \geq 0 \),

\[
f(x + y) - f(y) = \int_{y}^{x+y} f'(t)dt \leq \int_{0}^{x} f'(t)dt = f(x). \text{ Therefore (1) } f(x + y) \leq f(x) + f(y) .
\]

So set \(a = |x - y|, b = |y - z| \) and \(c = |x - z| \). Then by (1) above

\[
d_5(x, y) + d_5(y, z) = f(a) + f(b) \geq f(a + b) \geq f(c) = d_5(x, z) .
\]

the next to last inequality follows from the fact that \(f \) is increasing and \(a + b \geq c \) by the ordinary triangle inequality.

You could also do a brute force check of the triangle inequality.