1. Let $X = \{(x,y) \in \mathbb{R}^2 : (x,y) \neq (0,0)\}$. Define $f : X \rightarrow \mathbb{R}$ by $f(x,y) = \frac{xy}{x^2+y^2}$. Prove that f is continuous on X but that it is not possible to define $f(0,0)$ to make f continuous on \mathbb{R}^2.

Solution. Suppose we can define $f(0,0)$ so that f becomes continuous at $(0,0)$. Let $z_n = (2^{-n},2^{-n}) \rightarrow (0,0)$ and $w_n = (2^{-n},0) \rightarrow (0,0)$. Then $f(z_n) = \frac{1}{2}$ and $f(w_n) = 0$. But $\lim_{n \rightarrow \infty} f(z_n) = f(0,0) = \lim_{n \rightarrow \infty} f(w_n)$, which implies $1/2 = 0$. Hence it is not possible to define $f(0,0)$ so that f becomes continuous at $(0,0)$.

2. Prove that the function $f : [0,\infty) \rightarrow \mathbb{R}$ given by $f(x) = \sqrt{x}$ is uniformly continuous.

Solution. Let $x', x \geq 0$ and assume wlog that $x' \geq x$. Then $(\sqrt{x'} - \sqrt{x})^2 = x' + x - 2\sqrt{x'}\sqrt{x} \leq x' + x - 2\sqrt{x} = x' - x = |x' - x|$. Let $\varepsilon > 0$ and take $\delta = \varepsilon^2$. By the above we see that if $x, x' \geq 0$ satisfy $|x' - x| < \delta$, then $|\sqrt{x'} - \sqrt{x}| \leq \sqrt{|x' - x|} < \sqrt{\varepsilon^2} = \varepsilon$. This establishes the uniform continuity of the square root function on $[0,\infty)$.

3. Let $p : \mathbb{R} \rightarrow \mathbb{R}$ be an odd degree polynomial, that is $p(x) = \sum_{k=0}^{2N+1} a_k x^k$, where $a_{2N+1} \neq 0$ and $N \in \mathbb{N}$. Prove that p has a real root, i.e. there is an $x_0 \in \mathbb{R}$ such that $p(x_0) = 0$.

Solution. By replacing p with $-p$ we may assume that $a_{2N+1} > 0$. Using Theorem 4.34 in Rudin we have

$$\lim_{x \rightarrow +\infty} \frac{p(x)}{x^{2N+1}} = \sum_{k=0}^{2N+1} a_k \lim_{x \rightarrow +\infty} x^{k-2N-1} = a_{2N+1} > 0,$$

the last equality because all the limits are 0 except for the $k = 2N+1$ term where the limit is 1. Take $\varepsilon = a_{2N+1}/2 > 0$ to see that there is an $R_0 > 0$ s.t. if $x \geq R_0$, then $p(x)/x^{2N+1} > a_{2N+1}/2$, which implies that $p(x) > 0$. Similarly we have $\lim_{x \rightarrow -\infty} \frac{p(x)}{x^{2N+1}} = a_{2N+1} > 0$ and so there is a $R_1 < 0$ s.t. for $x \leq R_1 < 0$, $\frac{p(x)}{x^{2N+1}} > a_{2N+1}/2$ which implies that $p(x) < a_{2N+1}/2 x^{2N+1} < 0$. So as $p(R_1) < 0 < p(R_0)$, the Intermediate Value Theorem implies (p is continuous since it is a polynomial) there is an $x_0 \in [R_1, R_0]$ s.t. $p(x_0) = 0$.

4. Prove that a uniformly continuous function \(f : (0,1) \to \mathbb{C} \) is bounded.

Solution. By uniform continuity there is a natural number \(N \) such that if \(|x - x'| < 1/N \) (\(x, x' \) in \((0,1) \)), then \(|f(x) - f(x')| < 1 \). For \(i = 1, 2, \ldots, N \), let \(x_i \) be the midpoint of \(((i - 1)/N, i/N) \). Let \(M = \max(|f(x_1)|, \ldots, |f(x_N)|) + 1 \). Then for any \(x \in (0,1) \) we may choose \(i \) so that \(|x - x_i| < 1/N \) (e.g., choose \(i \) so that \(x \in ((i - 1)/N, i/N) \)). Then by the triangle inequality,

\[
|f(x)| \leq |f(x) - f(x_i)| + |f(x_i)| < 1 + |f(x_i)| \leq M.
\]

Therefore \(|f(x)| \) is bounded by \(M \) on \((0,1) \).

5. Let \(X \) be a compact metric space, let \(Y \) be a metric space, and let \(f : X \to Y \) be continuous. Let \(\{F_n\} \) be a decreasing sequence of nonempty closed subsets of \(X \). Prove that \(\cap_n f(F_n) = f(\cap_n F_n) \).

Solution. Assume \(y \in \cap_n f(F_n) \). Then for any natural number \(n \) there is an \(x_n \in F_n \) such that \(y = f(x_n) \). Since \(\{x_n\} \) is a sequence in the compact space \(X \), there is a convergent subsequence \(x_{n_k} \to x \in X \). Fix \(n_0 \). Then \(\{x_{n_k} : n_k \geq n_0\} \) is a sequence taking values in the closed set \(F_{n_0} \) and so the limit of this sequence, \(x \), must belong to \(F_{n_0} \). As \(n_0 \) is arbitrary we have proved that \(x \in \cap_n F_n \). By continuity of \(f \) we have \(y = \lim_{k \to \infty} f(x_{n_k}) = f(x) \) and so \(y \in f(\cap_n F_n) \). This proves that \(\cap_n f(F_n) \subset f(\cap_n F_n) \). The converse inclusion is true for any sets \(F_n \), and so we in fact obtain \(f(\cap_n F_n) = \cap_n f(F_n) \).

6. Chapter 4, Questions #2, 12, 14, 18, 21

7. Let \(E \subset X \), where \((X, d) \) is a metric space.

(a) If \(\bar{A}^E \) denotes the relative closure of a subset \(A \) of \(E \) in \(E \), and \(\bar{A} \) denotes the closure of \(A \) in \(X \), prove that \(\bar{A}^E = \bar{A} \cap E \). (You may the use the fact that for \(F \subset E \), \(F \) is relatively closed in \(E \) iff \(F = E \cap V \) for some closed set \(V \) in \(X \), as this follows easily from Theorem 2.30 in the text by taking complements in the appropriate space.)

Solution. Since \(\bar{A} \cap E \) is closed in \(E \), it follows that \(\bar{A}^E \subset \bar{A} \cap E \). Let \(F \) be a closed set in \(E \) such that \(A \subset F \). Then there is a closed subset \(V \) of \(X \) s.t. \(F = V \cap E \). Therefore \(A \subset V \) which implies that \(\bar{A} \subset V \), and hence \(\bar{A} \cap E \subset V \cap E = F \). Taking \(F = \bar{A}^E \) we get \(\bar{A} \cap E \subset \bar{A} \cap E \) and so equality holds.
We say that a metric space X is connected iff it is a connected subset of itself. Prove that if $E \subset X$, then E is a connected subset of X iff E is a connected metric space (when equipped with the metric it inherits from X). So as for compactness, connectedness is an absolute, not a relative, property.

Solution. We show that E is a disconnected metric space iff E is a disconnected subset of X.

(\Rightarrow) We have $E = A \cup B$, where A, B are non-empty and $A \cap \bar{B}^E = A^E \cap B = \emptyset$. From (a) we see that this implies $A \cap E \cap \bar{B} = \emptyset$. Since $A, B \subset E$, we conclude that $A \cap \bar{B} = \emptyset$ and so E is a disconnected subset of X.

(\Leftarrow) We have $E = A \cup B$, where A, B are non-empty and $\bar{A} \cap \bar{B} = A \cap \bar{B} = \emptyset$. From (a) we see that $\bar{A} \cap B = A \cap E \cap B = \emptyset$ and symmetrically, $\bar{B} \cap A = A \cap \bar{B} = \emptyset$. This implies E is a disconnected metric space.

(c) Prove the following are equivalent:

i. X is a connected metric space.

ii. X cannot be written as the union of two disjoint open non-empty sets.

iii. The only subsets of X which are both open and closed are \emptyset and X.

Solution. We prove the equivalence of the negations of i., ii., iii.

(not i. \Rightarrow not ii.) We have $X = A \cup B$, where A, B are non-empty and $A \cap \bar{B} = \emptyset$. This implies that $B \subset (\bar{A})^c$ and $A \subset (\bar{B})^c$ and hence that $(\bar{A})^c$ and $(\bar{B})^c$ are non-empty. Note also that $(\bar{A})^c \cap (\bar{B})^c = (\bar{A} \cup \bar{B})^c = X^c = \emptyset$. Therefore $X = (\bar{A})^c \cup (\bar{B})^c$ shows that X is the union of two non-empty disjoint open subsets.

(not ii. \Rightarrow not iii.) Assume $X = G_1 \cup G_2$ where G_i is non-empty open, and $G_1 \cap G_2$ is empty. Then $G_1 = G_2^c$ is also closed (as G_2 is open). Since $G_1^c = G_2$ is non-empty we see that G_1 is distinct from X and \emptyset, and is both open and closed.

(not iii. \Rightarrow not i.) Let A be a set which is open and closed and is distinct from X and \emptyset. Then A^c is also closed and open and non-empty. Therefore $X = A \cup A^c$, A and A^c are non-empty, $\bar{A} \cap A^c = A \cap A^c = \emptyset$, and $A \cap \bar{A}^c = A \cap A^c = \emptyset$. This shows that X is a disconnected metric space.