Practice Question

Let
\[F(x, y, z) = \frac{m}{4\pi |r|^3}, \quad \text{for } r = (x, y, z) \neq (0, 0, 0). \]

Hence \(F \) may be viewed as a repulsive force from the origin obeying an inverse square law. But we will think of it as a mass flow v.f. for some "stuff".

(a) Show that \(\nabla \cdot F = 0 \).

(b) Let \(S_0 \) be a smooth oriented surface so that \(S_0 = \partial B \) for some solid \(B \) in \(\mathbb{R}^3 \), where \(\mathbf{0} \notin S_0 \) and \(S_0 \) is oriented by the outward normal from \(B \).
 (i) If \(\mathbf{0} \notin B \) show that \(\int \int_{S_0} F \cdot dS = 0 \).
 (ii) If \(\mathbf{0} \in B \) show that \(\int \int_{S_0} F \cdot dS = m \).

We therefore say \(F \) is point source of stuff at \(\mathbf{0} \) of intensity \(m \).

Hint for (ii): We essentially showed in class (March 23) that if \(S_a \) is the sphere \(x^2 + y^2 + z^2 = a^2 \), oriented by the outward normal, then \(\int \int_{S_a} F \cdot dS = m \). Now apply the Divergence Theorem to the part of \(B \) outside the ball of radius \(a \) for small enough \(a \) so that the latter is contained in \(B \).