(1) Section 17.5: 8, 11 (give a brief explanation using the physical interpretation of curl and divergence), 16, 21, 30, 31
(2) Section 17.6: 4, 6, 20, 34
(3) Let S be the part of the hemisphere $x^2 + y^2 + z^2 = 4$, $z \geq 0$ that lies inside the cylinder $x^2 + y^2 = 2y$.
 (a) Describe the projection D of S onto the xy-plane.
 (b) Show that S is the graph of a function on D.
 (c) Find the area of this surface.
(4) Let S be the surface (a torus):
 \[(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\]
 (a) Show that the following is a parametrization of S:
 \[
 \mathbf{r}(u, v) = ((2 + \cos(v))\cos(u), \ (2 + \cos(v))\sin(u), \ \sin(v))
 \]
 (b) Describe the grid curves (i.e., the u-curves (constant v) and v-curves (constant u) for this parametrization.
 (c) Find all points on S for which the tangent plane is horizontal (i.e., parallel to the xy-plane).
 (d) Find the area of this surface.