Math 217 Midterm 2

Instructor: Prof. Ed Perkins

Duration: 50 minutes.

Instructions:

• Write your name on every page, and student ID on page 1.
• This examination contains four questions with total weight of 50 points.
• Write each answer clearly below the corresponding question (Use back of opposite page if needed).
• No calculators, books, notebooks or any other written materials are allowed.
• Good luck!
1. (12 pts) Evaluate: \(\iint_D e^{y^3} \, dA \), where \(D \) is the bounded region in the first quadrant \((x \geq 0, y \geq 0)\) between \(y = \sqrt{x} \) and \(y = 1 \).

\[
\begin{align*}
\iint_D e^{y^3} \, dA &= \int_0^1 \int_0^{\sqrt{x}} e^{y^3} \, dy \, dx \\
&= \int_0^1 y^2 e^{y^3} \, dy \quad \left(u = y^3, \quad \frac{dy}{3} = y^2 \, dy \right) \\
&= \int_0^1 e^{u \frac{1}{3}} \, du \\
&= \frac{e - 1}{3}
\end{align*}
\]
2. (18 pts) Let \(f(x, y, z) = x^2 + y^2 + z^2 - x - 2y - 2z \) on its domain
\[D = \{(x, y, z) : x^2 + y^2 + z^2 \leq 9\} \]

(a) Explain why \(f \) has absolute minimum and absolute maximum values on its domain.

Dislosed and bounded, \(f \) is continuous on \(D \). By the Fund Thm of Extreme Values, \(f \) attains its abs. max. and abs. min. values.

(b) Find all the critical points of \(f \).

\[\nabla f(x, y, z) = (2x - 1, 2y - 2, 2z - 2) = \mathbf{0} \]
\[\Rightarrow \quad x = \frac{1}{2}, \quad y = 1, \quad z = 1 \]
\[\Rightarrow (\frac{1}{2}, 1, 1) \text{ is only c. p.} \]

(c) Find the absolute minimum and absolute maximum values of \(f \) and all points where they are attained.

\[f(\frac{1}{2}, 1, 1) = \frac{1}{4} + 1 + 1 - \frac{1}{2} - 2 = 2 \cdot \frac{1}{2} = -\frac{1}{2} \]

\[\partial f = \{(x, y) : x^2 + y^2 + z^2 = 9, z \geq 0\} \]

To find abs max. and abs min.

\[\nabla f(x, y, z) = \lambda \nabla g(x, y, z) \]
\[\Rightarrow (x, y, z) = \lambda (2x, 2y, 2z) \]
\[\Rightarrow (-1, -2, -2) = \lambda (2x_1, 2y_1, 2z_1) \]
\[\Rightarrow x_1 = \frac{1}{2}, \quad y_1 = -\frac{1}{2}, \quad z_1 = 1 \]
\[\Rightarrow (x_1, y_1, z_1) \text{ by } (1) - (2) \]
\[\Rightarrow 2x = y \]

\[\Rightarrow x^2 + y^2 + z^2 = 9 \Rightarrow x^2 + 2x^2 + z^2 = 9 \Rightarrow x = \pm 1 \]
\[\Rightarrow (x, y, z) = (1, 1, 2) \text{ or } (-1, -2, -2) \]
\[f(1, 1, 2) = 1 + 1 + 4 + 4 = 10 \]
\[f(-1, -2, -2) = 1 + (-1 - 2) = 1 + 1 + 4 = 6 \]
\[\text{Abs. max. value is } 10 \text{ at } (-1, -2, -2); \text{ abs. min. value is } -2\frac{1}{2} = \frac{-5}{2}. \]
3. (15 pts) Let \(T(x, y, z) = e^{-x^2 - 2y^2 - 3z^2} \) be the temperature at \((x, y, z)\).

(a) If a particle is at \((1, 1, 1)\), in what direction should it head to warm up as quickly as possible?

\[
\nabla T(1,1,1) = (-2x, -4y, -6z) e^{-x^2 - 2y^2 - 3z^2}
\]

\[
\frac{\nabla T(1,1,1)}{\left| \nabla T(1,1,1) \right|} = \left(\frac{-2}{\sqrt{11}} \right)
\]

(b) Suppose another particle is passing through \((1, 1, 1)\) with (instantaneous) velocity \((e^5, 2e^5, -2e^5)\), what is the rate of change of its (*) temperature? (You may assume the particle's position vector \(r(t)\) has a continuous derivative.)

(*) that is, the temperature it feels.

Let \(\vec{r}(t)\) = position of particle where it passes through \((1,1,1)\) at \(t=0\):

\[
r'(0) = (e^5, 1, 3, -2)
\]

\[
\frac{d}{dt} T(\vec{r}(t)) \bigg|_{t=0} = \nabla T(\vec{r}(0)). \vec{r}'(0) \quad \text{(Chain Rule)}
\]

\[
= \nabla T(1,1,1). (e^5, 1, 3, -2)
\]

\[
= (-2, -4, -6) e^{-6} \cdot e^5 (1, 3, -2)
\]

\[
= e^{-1} [-2 - 8 + 12]
\]

\[
= 2e^{-1}
\]
4. (5 pts) Suppose f is a differentiable function on \mathbb{R}^2. It is known that $D_uf(0, 0) < D_if(0, 0)$ for all unit vectors $u \neq i$. Find $\frac{\partial f}{\partial y}(0, 0)$.

\[\frac{\partial f}{\partial y}(0, 0) = 0 \] (equal second components of above vectors)