\textbf{Math 217\ HW 6\ Solutions}\n
12.9 \#38. \(f(x,y) = -x^2 - y^2 + \sqrt{3}x - y - 1 \) on \(R = \{ (x,y) : x^2 + y^2 \leq 2 \} \).

\(f \) is continuous; \(R \) is a solid disk, hence closed and bounded.

\(f \) has abs. min. and abs. max. values by the F.T.E.V.

i. \(C \subset D \) \(\Rightarrow \) \(\Phi (x,y) = (-2x + \sqrt{3}, -2y - 1) = \Phi (0,0) \)

\(\Rightarrow \) \(x = \frac{\sqrt{3}}{2}, \ y = -\frac{1}{2} \) \(\Rightarrow \) \((x,y) = (\frac{\sqrt{3}}{2}, -\frac{1}{2}) \)

\(f \left(\frac{\sqrt{3}}{2}, -\frac{1}{2} \right) = -\frac{3}{4} - \frac{1}{2} + \frac{3}{4} + \frac{1}{2} - 1 = 0. \)

12.) \(\partial R = \{ (x,y) : x^2 + y^2 = 2 \} \) circle of radius \(\sqrt{2} \) centered at \((0,0)\).

Let \(g(\theta) = f(\sqrt{2} \cos \theta, \sqrt{2} \sin \theta) \) \(, \ \theta \in [0, 2\pi) \).

(abs max and min of \(f \) on \(\partial R \))

\(g(0) = -6 + \frac{\sqrt{2}}{2} (\sqrt{2} \cos 0) - \sqrt{2} \sin 0 - 1 = -6 + \frac{\sqrt{2}}{2} \cdot 2 - 1 = -\frac{11}{2} \)

\(g(\frac{\pi}{2}) = -6 + \frac{\sqrt{2}}{2} (\sqrt{2} \cos \frac{\pi}{2}) - \sqrt{2} \sin \frac{\pi}{2} - 1 = -6 + \frac{\sqrt{2}}{2} \cdot 0 - 1 = -7 \)

\(g(\pi) = -6 + \frac{\sqrt{2}}{2} (\sqrt{2} \cos \pi) - \sqrt{2} \sin \pi - 1 = -6 + \frac{\sqrt{2}}{2} \cdot (-2) - 1 = -6 - \sqrt{2} \)

\(g(\frac{3\pi}{2}) = -6 + \frac{\sqrt{2}}{2} (\sqrt{2} \cos \frac{3\pi}{2}) - \sqrt{2} \sin \frac{3\pi}{2} - 1 = -6 + \frac{\sqrt{2}}{2} \cdot 0 - 1 = -7 \)

\(g(2\pi) = -6 + \frac{\sqrt{2}}{2} (\sqrt{2} \cos 2\pi) - \sqrt{2} \sin 2\pi - 1 = -6 + \frac{\sqrt{2}}{2} \cdot 2 - 1 = -\frac{11}{2} \)

Ends; \(g(0) = g(2\pi) = 3 \sqrt{2} - 7 \)

\(\Rightarrow \) Abs max of \(f \) is \(3 \sqrt{2} - 7 \); Abs min of \(f \) is \(-2 \sqrt{2} - 7 \)

13.) So Abs max value of \(f \) is \(3 \sqrt{2} - 7 \) (at \(P_{\text{max}} = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2} \right) \) - not required)

Abs min value of \(f \) is \(-2 \sqrt{2} - 7 \) (at \(P_{\text{min}} = \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2} \right) \))

\(\Rightarrow \) \(\frac{1}{2} \left(-3 \sqrt{2}, \sqrt{6} \right) \)
12.4 # 24. \(f(x, y, z) = (x-1)^2 + (y-2)^2 + z^2 \) in \(\mathbb{R}^3 \).

Let \(S = \{(x, y, z) \mid z^2 - x^2 - y^2 = 0 \} \cap \mathbb{R}^3 \).

If \(f \) has an \(\text{abs min} \) on \(S \), \((x-1)^2 + (y-2)^2 + z^2 \leq 16 \) (closed and bounded) by \(\text{FTBV} \). Hence, as discussed in class \(f \) has an \(\text{abs min} \).

Let \((x_1, y_1, z_1)\) be point where \(\text{abs min} \) is achieved.

\[\frac{\partial f}{\partial (x, y, z)} = \lambda \frac{\partial g(x, y, z)}{\partial (x, y, z)} \quad \text{for some} \quad \lambda \in \mathbb{R}^3 \]

\(
(2x_1-1, 2y_1-2, 2z_1) = (-2x_1 - 2y_1, 2z_1) = (-4x_1, -4y_1, 2z_1)
\)

1) \(2x_1 = -2x \) \quad 2) \(2y_1 = -2y \) \quad 3) \(2z_1 = 2z \)

\[x_1 = 1 \quad \text{or} \quad \lambda = 0 \]

Case 1 \(\lambda = 0 \Rightarrow x_1 = y_1 = 0 \) by 4) \(z_1^2 = x_1^2 + y_1^2 \)

\[f(0, 0, 0) = 5 \]

Case 2 \(\lambda = 1 \quad \text{and} \quad \lambda \neq 0 \)

\[\partial f \quad \text{become} \quad \partial f' \quad \text{at} \quad (x_1, y_1) = \left(-\frac{x_1}{2} \right) \quad \text{and} \quad \lambda = 1 \left(\begin{array}{l}
2x_1 = -4x_1 \\
y_1 = 4 \\
z_1 = \frac{1}{2}
\end{array} \right)
\]

\[(x_1, y_1) = \left(\frac{1}{2}, 1 \right) \]

so by 4) \(z_1^2 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \)

\[z_1 = \frac{1}{2} \left(\sqrt{3} \right) \frac{1}{2} \]

\[f(\frac{1}{2}, 1, \frac{1}{2}) = \left(\frac{1}{2} - 1 \right)^2 + (1 - 2)^2 + \left(\frac{1}{2} \right)^2 = \frac{1}{4} + 1 + \frac{1}{4} = \frac{3}{2} \]

The points on \(S \) closest to \((1, 2, 0) \) are \((\frac{3}{2}, 1, \sqrt{\frac{3}{2}})\) and \((\frac{1}{2}, 1, -\sqrt{\frac{3}{2}})\)
12.9 #52(b) Let $D = \mathbb{R}^n$ be open, $f, g \in C^1(D)$, and $S = \{ (x_1, \ldots, x_n) \in D : g(x_1, \ldots, x_n) = 0 \}$.

If P is a local extreme of $f|_{S}$ and $\nabla g(P) \neq 0$, then there is a real no. λ so that $\nabla f(P) = \lambda \nabla g(P)$.

Let $f(x_1, \ldots, x_n) = \frac{1}{2} \sum_{i=1}^{n} x_i^2$, $D = \{ (x_1, \ldots, x_n) : x_1 > 0, \ldots, x_n > 0 \}$, $g(x_1, \ldots, x_n) = x_1 \cdots x_n$, $S_K = \{ (x_1, \ldots, x_n) \in D : x_1 \cdots x_n = k \}$.

S_K is closed and bounded so by FBBV $f|_{S_K}$ has an absolute max value. Clearly it will not occur when $x_i = 0$ and so it will occur at some $P_{\text{max}} \in S_K$.

To find it we use the above formulation of Lagrange Multipliers in n dimensions,

$$(\nabla f(x_1, \ldots, x_n))_i = \frac{\partial}{\partial x_i} f(x_1, \ldots, x_n) , \quad \nabla g(\xi_1, x_2, \ldots, x_n) = (1, 1, \ldots, 1)$$

2nd component

$$(\nabla f(x_1, \ldots, x_n)) = \lambda \nabla g(x_1, \ldots, x_n) = (\lambda, \lambda, \ldots, \lambda)$$

$$(\frac{\partial}{\partial x_i} f(x_1, \ldots, x_n)) = \lambda \frac{\partial}{\partial x_i} g(x_1, \ldots, x_n) = \lambda$$

As $x_i > 0 \text{ at any max}$, $\lambda > 0$ and so $x_i = \frac{\pi}{\lambda} \frac{x_i}{\lambda}$ all i.

$\therefore x_1 = \ldots = x_n$. Since $P_{\text{max}} \in S_K$ we get $x_1 = k/n \text{ all } i$,

$$(f(x_1, \ldots, x_n)) = (f(1, x_2, \ldots, x_n)) = (\frac{k}{n})^n \text{ must be the abs. max of } f|_{S_K}$$
\[x_i \in \left(\frac{k}{n} \right)^n = \left(\frac{\ell x_i}{n} \right)^n \quad \text{on all } \ell > 0. \]

\[\left(x_i \right)^n \leq \frac{\ell x_i}{n} \quad \text{for all } x_i > 0, n > 0 \]

\[\left(x_i \right)^n \leq \frac{x_i}{n} \quad \text{for all } i, j \geq 0 \]

because if any \(x_j = 0 \), the above inequality is obvious.

3.

17.9 #54. Minimize \(f(x, y, z) = x^2 + y^2 + z^2 \) on \[L: \begin{align*}
1: & \quad x + 2z - 12 = 0 \\
2: & \quad x + y - 1 = 0 \\
3: & \quad y = x \\
4: & \quad y = x \\
5: & \quad y = x \\
6: & \quad y = x \\
7: & \quad y = x \\
8: & \quad y = x \\
9: & \quad y = x
\end{align*} \] A nearest point \(P_{min} \) on \(L \cap \{ x^2 + y^2 + z^2 \leq 10^{10} \} = B \) exists because \(f \) is continuous and \(B \) is closed and bounded.

\[f \] has a minimum since \(P_{min} \) will be closer to \(B \) than any other point in \(L \setminus \{ x^2 + y^2 + z^2 \leq 10^{10} \} \) as these points have \(f > 10^{10} \).

To find \(P_{min} \) by #53, we solve:

\[\nabla f = \lambda \nabla g + \mu \nabla h \]

\[\begin{cases}
L: & \quad (2x, 2y, 2z) = \lambda (1, 0, 2) + \mu (1, 1, 0) = (\lambda + 1, \mu + 0, 2 \lambda) \\
M: & \quad 2x = \lambda + 1 \quad \Rightarrow \quad \lambda = 2x - 1 \\
N: & \quad 2y = \mu \quad \Rightarrow \quad \mu = 2y \\
O: & \quad 2z = 2 \lambda \quad \Rightarrow \quad z = \lambda.
\end{cases} \]

Put \(\lambda \) and \(\mu \) into L:

\[\begin{align*}
\text{Put (5) and (6) into (4):} & \quad 6 - \frac{2x}{3} = 2(2 - 16 - x) = 4x - 12 \\
& \quad 7.18 = 9.72 \Rightarrow x = 4 \quad \text{and so } y = 6 - x = 2 \quad \text{and} \quad z = 6 - \frac{2x}{3} = 4.
\end{align*} \]

\[\therefore (14, 3, 4) \text{ must be nearest point to } B \text{ on } L. \]
4. 13.2 #38

Problem:

It's easier to integrate with \(x \) first. (Why?)

\[
\text{Sl. } x^2y \, dA = \int_0^2 \int_{y^2}^{\sqrt{4-y^2}} x^2 y \, dx \, dy = \int_0^2 y \left[\frac{(2-y)^3}{3} - \frac{y^6}{3} \right] \, dy
\]

\[
= \frac{1}{3} \left[y^4 + 6y^3 + 3y^2 + 8y - \frac{y^7}{7} \right]_0^2
\]

\[
= \frac{1}{3} \left[2^4 + \frac{2^6}{4} + \frac{12 \cdot 2^3}{3} + \frac{8 \cdot 2^2}{2} - \frac{2^7}{7} \right] = \frac{\frac{232}{7}}{3}
\]
13.2 #7b

\[y = \frac{4}{3} x \]

\[a^2 + \left(\frac{4}{3} a \right)^2 = 1 \]

\[\Rightarrow a = \left(\frac{112}{57} \right) \]

\[SS xy \ dA = \int_{-\frac{3\sqrt{2}}{2}}^{\frac{3\sqrt{2}}{2}} \int_{-\frac{3\sqrt{2}-2x^2}{3}}^{\frac{3\sqrt{2}-2x^2}{3}} xy \ dy \ dx \]

\[= \int_{-\frac{3\sqrt{2}}{2}}^{\frac{3\sqrt{2}}{2}} \left[\frac{x^3}{2} \right]_{-a}^{a} \ dx \]

\[= \int_{-\frac{3\sqrt{2}}{2}}^{\frac{3\sqrt{2}}{2}} \left(\frac{16}{18} - 18x + \frac{72}{2} \right) \ dx \]

\[= \left[8 - 9x^2 + 72x + 9x^3 \right]_{-\frac{3\sqrt{2}}{2}}^{\frac{3\sqrt{2}}{2}} \]

\[= 0 \]

\[\therefore \int_{R} xy \ dA = 0 \]

by symmetry of \(R_1 \) about the \(y \) axis.

so \(xy \) cancels with \(\int yx \) when \(R_2 \) is used.

\[\int_{R} xy \ dA = 0 \] by symmetry of \(R_2 \) about the \(y \) axis.

so \(xy \) cancels with \(x - y \).

\[\therefore \int_{R} xy \ dA = \int_{R_1} xy \ dA + \int_{R_2} xy \ dA = 0 \]
Problem 5

(a) \(p, q > 0 \), \(\frac{1}{p} + \frac{1}{q} = 1 \) \(\implies \frac{q}{p} = 1 \).

\(f(x, y) = \frac{x^p}{y^q} \).
\[D = \{ (x, y) : x > 0, y > 0 \} \]
\[f \in C^1(D) \]

\(g(x, y) = xy \) \(g \in C^1(D) \).
Let \(C = \{ (x, y) : xy = c \} \) \(c > 0 \).

Assume \(f \mid C \) has an abs. min at \((x_0, y_0)\). (may assume it exists)

By Theorem Lagrange multipliers, there is a \(\lambda \in \mathbb{R} \) s.t.

\[\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0) \]
\[\implies \left(x_0, y_0^{-1} \right) = \lambda (y_0, x_0) \]
\[\implies x_0^{p-1} = xy \]
\[\implies y_0^{q-1} = x_0 \]
\[\implies \frac{x_0}{y_0} = \frac{y_0^{q-1}}{x_0} \]
\[\implies \lambda = \frac{y_0^{q-1}}{x_0} \]

(b) \(f(x_0, y_0) = (\frac{c^{2/p+1}}{p}) + (\frac{c^{1/q+1}}{q}) \)
\[= \left(\frac{1}{p} \right) c^{2p/q+1} = C \]

(b) If \(a > 0 \) or \(b > 0 \), \(ab > 0 \) and the conclusion is obvious.

Assume \(a, b > 0 \) and let \(c = ab > 0 \).

By (a)
\[\frac{a^p}{p} + \frac{b^q}{q} > C = ab \].