Theorem 5.6. Suppose A and B are two nonempty sets of reals such that $a \leq b$ for all $a \in A$ and $b \in B$.

(a) A is bounded above and hence has a least upper bound. B is bounded below and hence has a greatest lower bound.

(b) $\sup A \leq \inf B$.

Proof. (a) Any b in B is an upper bound for A and any $a \in A$ is lower bound for B. So the Completeness Axiom shows $\sup A$ exists, and Theorem 5.4 shows $\inf B$ exists.

(b) For any $b \in B$, b is an upper bound for A and so the least upper bound of A is less than or equal to b. This shows that $\sup A$ is a lower bound for B. Hence $\sup A$ is less than or equal to the greatest lower bound of B.

\square