Solutions to Assignment 5

1. Evaluate (simplify your answers when possible):

(a) \[\int \frac{x^2}{(1-x^2)^{5/2}} \, dx. \]

(b) \[\int_3^4 \frac{dx}{x\sqrt{x^2-4}}. \]

(c) \[\int \frac{dx}{3+2\sin x}. \]

(d) \[\int \sqrt{x-x^2} \, dx. \]

(e) \[\int_0^1 \frac{x^{1/2}}{1+x^{3/2}} \, dx. \]

Solutions

(a) Let \(x = 2 \sin \theta \) so that \(dx = 2 \cos \theta \, d\theta \) and

\[
\int \frac{x^2}{(4-x^2)^{5/2}} \, dx = \int \frac{4 \sin^2 \theta \cos \theta}{(4 \cos^2 \theta)^{5/2}} \, d\theta \\
= 8(4^{-5/2}) \int \sin^2 \theta \cos^{-4} \theta \, d\theta \\
= 4^{-1} \int \tan^2 \theta \sec^2 \theta \, d\theta \\
= 4^{-1} \int u^2 \, du \quad \text{where} \quad u = \tan \theta \\
= 4^{-1} \tan^3 \theta/3 = (12)^{-1} \tan^3(\arcsin(x/2)) = (12)^{-1} \left[\frac{x}{\sqrt{4-x^2}} \right]^3 + C.
\]

The last inequality can be seen by drawing a right angle triangle with angle \(\theta \) satisfying \(\sin \theta = x/2 \) so that the sides can be \(\text{opp} = x, \ \text{hyp} = 2, \ \text{adj} = \sqrt{4-x^2}. \)

(b) \[I = \int_3^4 \frac{dx}{x\sqrt{x^2-4}}. \] Let \(x = 2 \sec \theta \) so that \(dx = 2 \sec \theta \tan \theta \, d\theta \) and

\[
I = \int_{\sec^{-1}\frac{3}{2}}^{\sec^{-1}\frac{3}{2}} \frac{2 \sec \theta \tan \theta}{(2 \sec \theta)(2 \tan \theta)} \, d\theta = \frac{1}{2} (\sec^{-1}(2) - \sec^{-1}(3/2)) = \frac{\pi}{6} - \frac{1}{2} \sec^{-1}(3/2).
\]

(c) Let \(y = \tan(x/2) \) so that \(dx = \frac{2 \, dy}{1+y^2} \) and \(\sin x = \frac{2y}{1+y^2}. \) Therefore

\[
\int \frac{dx}{3+2\sin x} = \int \frac{1}{3 + \frac{4y}{1+y^2}} \, dy \\
= 2 \int \frac{1}{3 + 4y + 3y^2} \, dy \\
= 2 \left(\frac{3}{3} \int \frac{1}{(y+(2/3))^2 + (5/9)} \, dy \right) \\
= \frac{2}{3} \arctan \left(\frac{y+(2/3)}{\sqrt{5}/3} \right) + C \\
= \frac{2}{\sqrt{5}} \arctan \left(\frac{3y+2}{\sqrt{5}} \right) + C.
\]
Evaluate the following improper integrals:

(a) \(I = \int \frac{1}{\sqrt{1 - \frac{1}{4}x}} \, dx \) = \(\int \frac{1}{\sqrt{x - x^2}} \, dx \). Let \(x - \frac{1}{2} = \frac{1}{2} \sin \theta \), so that \(dx = \frac{1}{2} \cos \theta \, d\theta \) and
\[
I = \int \frac{1}{4} \cos^2 \theta \, d\theta = \frac{1}{8} \int 1 + \cos 2\theta \, d\theta = \frac{\theta}{8} \quad \text{and} \quad \theta = \frac{\theta}{16} \sin 2\theta / \sin \theta = \theta c / 8 + (\sin \theta \cos \theta) / 8
\]
\[
= \sin^{-1}(2x - 1)/8 + \frac{1}{2}(2x - 1)\sqrt{x - x^2} + C.
\]

(b) \(I = \int \frac{x^{1/2}}{1 + x^{3/2}} \, dx \). Let \(x = u^6 \) so that \(dx = 6u^5 \, du \) and (long division)
\[
I = \int \frac{6u^8}{1 + u^2} \, du = \int u^6 - u^4 + u^2 - 1 + \frac{1}{1 + u^2} \, du = 6\left(\frac{u^7}{7} - \frac{u^5}{5} + \frac{u^3}{3} - u + \arctan u\right)_{0}^{1}
\]
\[
= 6\left(\frac{1}{7} - \frac{1}{5} + \frac{1}{3} - 1 + \arctan 1\right) = \frac{3\pi}{2} - \frac{152}{35}.
\]

2. Evaluate the following improper integrals:

(a) \(\int_{-\infty}^{\infty} \frac{dx}{x^2 + 6x + 12} \).

(b) \(\int_{1/2}^{1} \frac{1}{\sqrt{x(1-x)}} \, dx \).

(c) \(\int_{0}^{\pi/2} \frac{\sec^2 x \, dx}{dx} \).

Solutions

(a) If \(w = x + 3 \), then \(\int (x^2 + 6x + 12)^{-1/2} \, dx = \int ((x+3)^2+3)^{-1/2} \, dx = \int (w^2 + 3) \, dw = 3^{-1/2} \arctan((x+3)/\sqrt{3}) + C \). Therefore
\[
\int_{-\infty}^{\infty} \frac{dx}{x^2 + 6x + 12} = \lim_{R \to \infty} 3^{-1/2} \arctan((x+3)/\sqrt{3})_{0}^{1} + \lim_{R \to \infty} 3^{-1/2} \arctan((x+3)/\sqrt{3})_{1}^{R}
\]
\[
= -(-3^{-1/2}\pi/2) + 3^{-1/2}\pi/2 = \pi/\sqrt{3}.
\]

Note the values of \(\arctan((x+3)/\sqrt{3}) \) at \(x = 0 \) cancel in the above.

(b) \(\int_{1/2}^{1} \frac{1}{\sqrt{x(1-x)}} \, dx = \int_{1/2}^{1} \frac{1}{\sqrt{4x} - 2x^2} \, dx = \arcsin(2x - 1) + C \). Therefore
\[
\int_{1/2}^{1} \frac{1}{\sqrt{x(1-x)}} \, dx = \lim_{c \to 1^-} \arcsin(2c - 1)_{1/2}^{c}
\]
\[
= \lim_{c \to 1^-} \arcsin(2c - 1) = \pi/2.
\]

(c) The limit argument in this question requires care. Take a close look at the argument.

Lemma: \(\lim_{c \to \pi/2^-} \log(\cos c) / \sec c = 0 \).

Pf. By L’Hospital the above limit is \(\lim_{c \to \pi/2^-} \frac{-\tan c}{\sec c \tan c} = \lim_{c \to \pi/2^-} \cos c = 0 \).

We showed in class that \(\int x \sec^2 x \, dx = x \tan x - \log(\sec x) + C \). Therefore
\[
\int_{0}^{\pi/2} x \sec^2 x \, dx = \lim_{c \to \pi/2^-} x \tan x - \log|\sec x|_{0}^{c}
\]
\[
= \lim_{c \to \pi/2^-} c \tan c - \log(\sec c)
\]
\[
= \lim_{c \to \pi/2^-} \sec c \left[c \sin c + \log(\cos c) / \sec c \right]. \quad (1)
\]
By the Lemma the term in square brackets converges to \(\pi/2 > 1 \) as \(c \to \pi/2^- \). If \(M > 0 \) we may choose \(0 < c_0 < \pi/2 \) so that if \(c \in (c_0, \pi/2) \), then \(\sec c > M \) and the term in square brackets in (1) is at least one. Therefore

\[
\sec c \left[c \sin c + \log(\cos c)/\sec c \right] > M
\]

and it follows by definition that (1) is \(\infty \).

3. Find all \(p > 0 \) such that the improper integral

\[
I_p = \int_0^{e^{-2}} \frac{dx}{x|\log x|^p}
\]

converges. Justify your answer. When the integral converges, evaluate it.

Solution. If, for \(x \in (0, e^{-2}) \), \(u = |\log x| = \log(1/x) \), then \(du = -dx/x \) and we get (the improper integral is of course a limit which justifies the new limits on \(u \)),

\[
\int_0^{e^{-2}} \frac{dx}{x|\log x|^p} = \int_{2}^{\infty} u^{-p}du.
\]

We know the above \(p \)-integral converges iff \(p > 1 \) and hence so does the original improper integral. In this case we see the required integral is

\[
\left. \frac{u^{1-p}}{1-p} \right|_2^\infty = \frac{2^{1-p}}{p-1}.
\]

4. Assume \(f : [a, b] \to \mathbb{R} \), \(f'' \) is continuous on \([a, b]\), and \(f(a) = f(b) = 0 \). Prove that

\[
\int_a^b (b-x)(x-a)f''(x) \, dx = -2 \int_a^b f(x) \, dx.
\]

Hint: One approach is to integrate by parts.

Solution Let \(U = (b-x)(x-a) \) and \(dV = f''(x)dx \). Then \(dU = (a+b-2x)dx \) and \(V = f' \). So IBP shows the left-hand side equals

\[
(b-x)(x-a)f'(x)|_a^b - \int_a^b (a+b-2x)f'(x)dx = -\int_a^b (a+b-2x)f'(x)dx.
\]

IBP one more time with \(U = a+b-2x \) and \(dV = f'(x)dx \), so that \(dU = -2dx \) and \(V = f \). Therefore the above equals (there are 3 negative signs for the second term)

\[
-(a+b-2x)f(x)|_a^b - 2 \int_a^b f(x) \, dx = -2 \int_a^b f(x) \, dx,
\]

where in the last equality we use \(f(a) = f(b) = 0 \). This is the right-hand side of the desired equality, and so completes the argument.

5. Evaluate or prove the integral is not defined: \(\int_{-\pi/2}^{\pi/2} \log(\cos x) \tan x \, dx \).

Solution. The integrand is a continuous odd function on \((-\pi/2, \pi/2)\) but converges to \(\infty \) as \(x \to (-\pi/2)^+ \) and to \(-\infty \) as \(x \to \pi/2^- \). So it is
an improper integral. Recall from HW4 Q1(b) that \(\int \log(\cos x) \tan x \, dx = -\frac{1}{2} [\log(\cos x)]^2 \). Therefore

\[
\int_{-\pi/2}^{0} \log(\cos x) \tan x \, dx = \lim_{c \to (-\pi/2)^+} \int_{c}^{0} \log(\cos x) \tan x \, dx
\]

\[
= \lim_{c \to (-\pi/2)^+} 0 + \log(c)^2/2 = \infty.
\]

Similarly we get

\[
\int_{0}^{\pi/2} \log(\cos x) \tan x \, dx = \lim_{c \to \pi/2^-} \int_{0}^{c} \log(\cos x) \tan x \, dx
\]

\[
= \lim_{c \to \pi/2^-} -[\log(\cos c)]^2/2 + 0
\]

\[
= -\infty.
\]

Therefore \(\int_{-\pi/2}^{\pi/2} \log(\cos x) \tan x \, dx \) leads to the indeterminate form \(\infty - \infty \) and so is not defined.

6. Assume \(f : (a, b] \to \mathbb{R} \) is bounded and also is integrable on \([c, b] \) for every \(c \in (a, b) \). Extend \(f \) to \([a, b] \) by defining \(f(a) = y_0 \) for some constant \(y_0 \).

(a) Prove that \(f \) is integrable on \([a, b] \).

(b) Prove that \(\int_{a}^{b} f \, dx \) does not depend on the choice of \(y_0 \).

Hint. One approach to (a) is to use the integrability test.

This shows that for functions such as \(f \) above, there is no need to define the integral on \([a, b] \) as an improper integral!

Solution. (a) Assume \(M > 1 \) satisfies \(|f(x)| \leq M \) for all \(x \in [a, b] \). Let \(\varepsilon > 0 \). Choose \(0 < \delta < \min\left(\frac{\varepsilon}{4M}, b - a \right) \). By integrability of \(f \) on \([a + \delta, b] \) (an interval of positive length by the choice of \(\delta \)), there is a partition, \(Q \), of \([a + \delta, b] \) so that \(U(f, Q) - L(f, Q) < \frac{\varepsilon}{2} \). Let \(P = Q \cup \{a\} \), a partition of \([a, b] \).

Let \(M_i, m_i \) be the usual sup and inf of \(f \) over the \(i \)th interval in \(P \). Then as \(-M\) is a lower bound of \(f \) and \(M \) is an upper bound of \(f \) over \([a, b] \), it follows that

\[
m_i, M_i \in [-M, M] \quad \text{for all} \ i.
\]

Therefore we have

\[
U(f, P) - L(f, P) = (M_1 - m_1)\delta + (U(f, Q) - L(f, Q)) < 2M\delta + \frac{\varepsilon}{2} \quad \text{(by (2) and our choice of} Q)\]

\[
< 2M \frac{\varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon.
\]

The integrability test now shows that \(f \) is integrable over \([a, b] \).

(b) Define \(g(x) = f(x) \) for \(x \in (a, b] \) and \(g(a) = 0 \). So \(g \) is integrable on \([a, b] \)
by taking \(y_0 = 0 \) in (a). It clearly suffices to prove that

\[
\int_a^b f dx = \int_a^b g dx,
\]

because the RHS does not depend on the choice of \(y_0 \). Recall \(I_a(x) \) equals 1 if \(x = a \) and is zero elsewhere and that (e.g. Q4 on HW 3) \(\int_a^b I_a dx = 0 \). We have \(f = g + y_0 I_a \) and so by linearity of the integral,

\[
\int_a^b f dx = \int_a^b g + y_0 I_a dx = \int_a^b g dx + y_0 \int_a^b I_a dx = \int_a^b g dx.
\]

This proves (3) and the proof is complete.

7. Practice questions (not to hand in). Sec. 6.5 #6, 11, 18, 22