Math 121 Solutions to Assignment 2 Due Wed. Jan. 16 at start of class

You may use any theorems stated in class.

1. Express the following limits as definite integrals (justify your answers).

(a) \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{n}{n^2 + i^2} \)

(b) \(\lim_{n \to \infty} \sum_{i=1}^{n} i^{1/3} n^{-4/3} \).

Solution. (a) Dividing top and bottom by \(n^2 \) we see the limit is

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + (i/n)^2} = \int_{0}^{1} \frac{1}{1 + x^2} \, dx.
\]

Here we have used the continuity of \(f(x) = (1 + x^2)^{-1} \) to apply Theorem 5.13 from class which says the integral is the limit of a sequence of Riemann sums for partitions whose norms approach zero.

(b) \(\lim_{n \to \infty} \sum_{i=1}^{n} i^{1/3} n^{-4/3} = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^{1/3} \frac{1}{n} = \int_{0}^{1} x^{1/3} \, dx. \)

Again we are using the continuity of \(f(x) = x^{1/3} \) as in (a).

2. Assume \(a < c < b \). If \(f \) is integrable on \([a, c]\) and on \([c, b]\), prove that \(f \) is integrable on \([a, b]\). (Note: To be precise one should say the restrictions of \(f \) to \([a, c]\) and \([c, b]\) are integrable on these intervals.)

Solution. Let \(\varepsilon > 0 \). Choose partitions \(P_1 \) of \([a, c]\) and \(P_2 \) of \([c, b]\) so that \((U - L)(f, P_1) < \varepsilon/2 \) and \((U - L)(f, P_2) < \varepsilon/2 \). (They exist by the Integrability Test.) Then \(P = P_1 \cup P_2 \) is a partition of \([a, b]\) and, as noted in class,

\[
(U - L)(f, P) = (U - L)(f, P_1) + (U - L)(f, P_2) < 2\varepsilon/2 = \varepsilon.
\]

By the Integrability Test, \(f \) is integrable on \([a, b]\).

3. A function \(f \) is increasing if \(x \leq x' \) implies \(f(x) \leq f(x') \), and is decreasing if \(x \leq x' \) implies \(f(x) \geq f(x') \). We say \(f \) is monotone if it is either increasing or decreasing. Let \(f : [a, b] \to \mathbb{R} \) be a monotone function.

(a) Prove that for any partition \(P = \{x_0, x_1, \ldots, x_n\} \) of \([a, b]\),

\[
U(f, P) - L(f, P) \leq |f(b) - f(a)||\|P\|. \]

(Recall that \(\|P\| = \max_{i=1}^{n} \Delta x_i \).

(b) Prove that \(f \) is integrable on \([a, b]\).
(c) Use (a) and (b) to show that for any partition P of $[a, b]$,

$$\left| \int_a^b f(x) \, dx - L(f, P) \right| \leq |f(b) - f(a)||P|$$

and

$$\left| \int_a^b f(x) \, dx - U(f, P) \right| \leq |f(b) - f(a)||P|$$

Solution. (a) Let’s assume f is increasing and let $P = \{x_0, \ldots, x_n\}$. Since f is increasing we have $M_i = f(x_i)$ and $m_i = f(x_{i-1})$. Therefore

$$U(f, P) - L(f, P) = \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \Delta x_i$$

$$\leq \max\{\Delta x_i : i = 1, \ldots, n\} \sum_{i=1}^n f(x_i) - f(x_{i-1}) = ||P|| (f(b) - f(a)).$$

In the last line we used the fact that we have a telescoping sum. The proof for f decreasing is similar.

(b) We may assume $|f(b) - f(a)| > 0$, since otherwise f is constant. Let $\epsilon > 0$. Choose P so that $||P|| < \epsilon / |f(b) - f(a)|$. Then by (a) we have

$$U(f, P) - L(f, P) \leq ||P|| |f(b) - f(a)| < \epsilon.$$

By the Integrability Test, f is integrable on $[a, b]$.

(c) By the definition of the Riemann integral and (b) we have,

$$0 \leq \int_a^b f(x) \, dx - L(f, P) \leq U(f, P) - L(f, P) \leq |f(b) - f(a)||P|.$$

This gives the first inequality and the second one is proved in the same way.

4. Prove that for any $a < b$,

(a) $(a, b) \cap \mathbb{Q}$ is non-empty.

Hint. Choose a natural number n so that $1/n < b - a$. If $[x]$ denotes the unique integer m so that $x \in [m-1, m)$ consider $r = [na]/n$.

(b) $(a, b) \cap \mathbb{Q}^c$ is non-empty.

Hint. One approach is to first show that $\sqrt{2}r$ is irrational for every rational r. (You may assume $\sqrt{2}$ is irrational.)

Solution. (a) Clearly $r = [na]/n$ is rational. Note that if n is chosen as in the Hint,

$$a = \frac{na}{n} < \frac{[na]}{n} \leq \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b,$$

so that $r \in (a, b)$.

(b) Let $r \neq 0$ be rational. If $\sqrt{2}r = s$ is rational, then $\sqrt{2} = sr^{-1}$ is rational, a contradiction. Therefore $A = \{\sqrt{2}r : r \in \mathbb{Q}, r \neq 0\} \subseteq \mathbb{Q}^c$.

Now by (a) $(a/\sqrt{2}, b/\sqrt{2})$ contains a rational number r. If $r = 0$, then this interval will contain $1/n$ for large enough n so that $1/n < b/\sqrt{2}$ and so we may assume $r \neq 0$. Therefore $a < \sqrt{2}r < b$ and so (a, b) contains $\sqrt{2}r$ which is irrational by the above.
5. Let f be a bounded function on $[a, b]$ and $P = \{x_0, \ldots, x_n\}$ be a partition of $[a, b]$. Define M_i and m_i as usual and let M_i' and m_i' have the usual meanings but for $|f|$.

(a) Prove that $M_i' - m_i' \leq M_i - m_i$.

Hint: One approach is to let $\varepsilon > 0$ and choose $y_i \in [x_{i-1}, x_i]$ such that $|f(y_i)| \geq M_i' - \varepsilon$. (Why is this possible?) You may also use the trivial fact that for any reals A, B, we have by the triangle inequality, $|A| - |B| \leq |A - B|$.

(b) Prove that if f is integrable on $[a, b]$, then so is $|f|$.

Hint: Even if you don’t do (a), if you assume (a) this is fairly easy.

(c) Prove that for any real numbers A, B, $\max(A, B) = \frac{A + B + |A - B|}{2}$. Here $\max(A, B)$ is the maximum of A and B, and, yes, this is very easy.

(d) Prove that if f and g are integrable on $[a, b]$, then so is $h(x) = \max(f(x), g(x))$.

Solution. (a) Let $\varepsilon > 0$. By HW1 Q4 we may choose $y_i \in [x_{i-1}, x_i]$ s.t. $|f(y_i)| \geq M_i' - \varepsilon$. Similar reasoning allows us to choose $z_i \in [x_{i-1}, x_i]$ s.t. $|f(z_i)| \leq m_i' + \varepsilon$. Assume wolog that $f(y_i) \geq f(z_i)$ (the argument is the same if the opposite inequality holds). Then

$$M_i' - m_i' \leq |f(y_i)| - |f(z_i)| + 2\varepsilon$$

$$\leq |f(y_i) - f(z_i)| + 2\varepsilon$$

$$= f(y_i) - f(z_i) + 2\varepsilon$$

$$\leq M_i - m_i + 2\varepsilon.$$

In the second inequality we have used the triangle inequality as noted in the question. As the above inequality holds for any $\varepsilon > 0$, the desired inequality follows.

(b) Let $\varepsilon > 0$ and use the Integrability Test (and the integrability of f) to find a partition $P = \{x_0, \ldots, x_n\}$ of $[a, b]$ s.t. $U(f, P) - L(f, P) < \varepsilon$. Now use (a) to conclude that

$$U(|f|, P) - L(|f|, P) = \sum_{i=1}^{n} (M_i' - m_i') \Delta x_i$$

$$\leq \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = U(f, P) - L(f, P) < \varepsilon.$$

Another application of the Integrability Test now shows that $|f|$ is integrable on $[a, b]$.

(c) Assume wolog that $A \geq B$. Then $\frac{A + B + |A - B|}{2} = (A + B + A - B)/2 = A = \max(A, B)$.

(d) By (d), $(*)h(x) = (f(x) + g(x))/2 + |(f(x) - g(x))/2|$. Recall from the Linearity of the Integral that $(f + g)/2$ is integrable and
$(f - g)/2$ is integrable. By the last and (b), $|(f - g)/2|$ is also integrable. So (*) shows h is the sum of two integrable functions and hence is integrable by the Arithmetic of Integrals.

6. Practice Questions (Do not hand in): Sec. 5.4 Exercises (p. 312-313) #7, #9, #20, #38.