Math 121 Solutions to Assignment 1

1. Evaluate (show work as always): \(\sum_{i=2}^{100} \log \left(1 + \frac{2}{i} \right) \).

Solution:
\[
\sum_{i=2}^{100} \log \left(1 + \frac{2}{i} \right) = \sum_{i=2}^{100} \log(1 + 2) - \log i = \sum_{j=4}^{102} \log(j) - \sum_{i=2}^{100} \log i = \log(102) + \log(101) - \log(3) - \log(2) = \log(1717).
\]

2. For each of the following sets find (i) the sets \(\mathcal{L} \) and \(\mathcal{U} \) of lower bounds and upper bounds, respectively, (ii) the given set’s least upper bound and greatest lower bound, if they exist. You need not provide justifications.

(a) \(A = \left\{ \frac{3}{n^2} : n \in \mathbb{N} \right\} \)

(b) \(B = \{ x \in \mathbb{R} : x \text{ rational}, 0 < x^2 \leq 2 \} \)

(c) \(C = \{ x : x^2 - 3x + 2 < 0 \} \)

Solution: (a) \(A = \left\{ \frac{3}{n^2} : n \in \mathbb{N} \right\}, \mathcal{L} = (-\infty, 0], \mathcal{U} = [3, \infty) \). Therefore \(\sup(A) = \min \mathcal{U} = 3 \) and \(\inf(A) = \max \mathcal{L} = 0 \).

(b) \(B = \{ x \in \mathbb{R} : x \text{ rational}, 0 < x^2 \leq 2 \}, \mathcal{L} = (-\infty, -\sqrt{2}], \mathcal{U} = [\sqrt{2}, \infty) \) (a proof would use Question 5 below). Therefore \(\sup(A) = \min \mathcal{U} = \sqrt{2} \) and \(\inf(A) = \max \mathcal{L} = -\sqrt{2} \).

(c) \(C = \{ x : (x - 1)(x - 2) < 0 \} = (1, 2) \). So \(\mathcal{L} = (-\infty, 1], \mathcal{U} = [2, \infty), \sup(C) = 2 \) and \(\inf(C) = 1 \).

3. Let \(A \) be a non-empty subset of real numbers which is bounded below and \(-A = \{ -a : a \in A \} \).

(a) Prove that \(\sup(-A) \) exists.

(b) Prove that \(\inf A = -\sup(-A) \).

Solution: (a) If \(K \) is a lower bound for \(A \), then \(-K \) is an upper bound for \(-A \), and so \(-A \) is bounded above. Clearly it is also non-empty since \(A \) is. Therefore by the Completeness Axiom for the real numbers, \(\sup(-A) \) exists.

(b) If \(a \in A \), then \(-a \leq \sup(-A) \) and therefore \(a \geq -\sup(-A) \). We have shown \(-\sup(-A) \) is an lower bound for \(A \).

Let \(\ell \) be any lower bound for \(A \). If \(a \in A \) we have \(a \geq \ell \) and so \(-a \leq -\ell \). Therefore \(-\ell \) is an upper bound for \(-A \) and so \(\sup(-A) \leq -\ell \). The latter implies \(-\sup(-A) \geq \ell \) and so \(-\sup(-A) \) is the greatest lower bound of \(A \), as required.
4. Let \(A \) be a non-empty set bounded below and let \(\ell = \inf A \). Prove that for every \(\epsilon > 0 \), the set \([\ell, \ell + \epsilon) \cap A\) is non-empty. (Hint: this is an easy consequence of the definition.)

Of course a similar argument shows that if \(A \) is a non-empty set bounded above, and \(u = \sup A \), then for every \(\epsilon > 0 \), the set \((u - \epsilon, u) \cap A\) is non-empty (you need not show this). These are useful results to have at your fingertips.

Solution: Since \(\ell \) is the greatest lower bound of \(A \), \(\ell + \epsilon \) cannot be a lower bound for \(A \). So there must be an \(a \in A \) satisfying \(a < \ell + \epsilon \). As \(\ell \) is a lower bound for \(A \) we must also have \(a \geq \ell \). Therefore \(a \in [\ell, \ell + \epsilon) \) and so \([\ell, \ell + \epsilon) \cap A\) is non-empty.

5. Prove that for any \(a < b \),

(a) \((a, b) \cap \mathbb{Q} \) is non-empty.

Hint: Choose a natural number \(n \) so that \(1/n < b - a \). If \(\lfloor x \rfloor \) denotes the unique integer \(m \) so that \(x \in [m - 1, m) \) consider \(r = [na]/n \).

(b) \((a, b) \cap \mathbb{Q}^c \) is non-empty (\(\mathbb{Q}^c \) is the complement of \(\mathbb{Q} \)).

Hint. One approach is to first show that \(\sqrt{2}r \) is irrational for every non-zero rational \(r \). (You may assume \(\sqrt{2} \) is irrational.)

Solution. (a) Clearly \(r = [na]/n \) is rational. Note that if \(n \) is chosen as in the Hint,
\[
a = na \frac{na}{n} < \frac{[na]}{n} \leq \frac{na+1}{n} = a + \frac{1}{n} < a + (b - a) = b,
\]
so that \(r \in (a, b) \).

(b) Let \(r \neq 0 \) be rational. If \(\sqrt{2}r = s \) is rational, then \(\sqrt{2} = sr^{-1} \) is rational, a contradiction. Therefore \(A = \{ \sqrt{2}r : r \in \mathbb{Q}, r \neq 0 \} \subseteq \mathbb{Q}^c \).

Now by (a) \((a/\sqrt{2}, b/\sqrt{2}) \) contains a rational number \(r \). If \(r = 0 \), then this interval will contain \(1/n \) for large enough \(n \) so that \(1/n < b/\sqrt{2} \). Therefore by replacing \(r = 0 \) with \(1/n \neq 0 \) we may assume \(r \neq 0 \). Therefore \(a < \sqrt{2}r < b \) and so \((a, b) \) contains \(\sqrt{2}r \) which is irrational by the above.

6. A function \(f \) is increasing if \(x \leq x' \) implies \(f(x) \leq f(x') \), and is decreasing if \(x \leq x' \) implies \(f(x) \geq f(x') \). We say \(f \) is monotone if it is either increasing or decreasing. Let \(f : [a, b] \to \mathbb{R} \) be a decreasing function.

(a) Prove that for any partition \(P = \{x_0, x_1, \ldots, x_n\} \) of \([a, b]\),
\[
U(f, P) - L(f, P) \leq |f(b) - f(a)||P|.
\]

(Recall that \(||P|| = \max_{i=1, \ldots, n} \Delta x_i \).)

(b) Prove that \(f \) is integrable on \([a, b]\).

(c) Use (a) and (b) to show that for any partition \(P \) of \([a, b]\),
\[
\left| \int_a^b f \, dx - L(f, P) \right| \leq |f(b) - f(a)||P| \quad \text{and} \quad \left| \int_a^b f \, dx - U(f, P) \right| \leq |f(b) - f(a)||P|,
\]
Of course similar arguments will work if \(f \) is increasing and so the above holds for any monotone \(f \).

Solution: (a) Let \(P = \{x_0, \ldots, x_n\} \). Since \(f \) is decreasing we have \(m_i = f(x_i) \) and \(M_i = f(x_{i-1}) \). Therefore

\[
U(f, P) - L(f, P) = \sum_{i=1}^{n} (f(x_{i-1}) - f(x_i)) \Delta x_i \\
\leq \max\{\Delta x_i : i = 1, \ldots, n\} \sum_{i=1}^{n} f(x_{i-1}) - f(x_i) \\
= \|P\| (f(b) - f(a)) = \|P\| |f(b) - f(a)|.
\]

In the last line we used the fact that we have a telescoping sum.

(b) We may assume \(|f(b) - f(a)| > 0\), since otherwise \(f \) is constant and we noted integrability in class. Let \(\epsilon > 0 \). Choose \(P \) s.t. \(\|P\| < \epsilon/|f(b) - f(a)| \). Then by (a) we have \(U(f, P) - L(f, P) \leq \|P\| |f(b) - f(a)| < \epsilon \). By the Integrability Test, \(f \) is integrable on \([a, b]\).

(c) By the definition of the Riemann integral and (b) we have,

\[
0 \leq \int_{a}^{b} f dx - L(f, P) \leq U(f, P) - L(f, P) \leq |f(b) - f(a)| \|P\|.
\]

This gives the first inequality and the second one is proved in the same way.

7. These are practice questions from the text NOT TO BE HANDED IN.

Ex. 5.1 # 12, 22, 39