
1 Math 406, Project 2: Due 17 th Dec. in Math 108 at 12 noon

Electrical Impedance Tomography (EIT)

2 Problem description

In this project we illustrate the application of Green’s functions to the problem of determining

changes of conductivity σ(r, θ) within a circular region from a finite number of voltage measurement

along the boundary for a current I applied to parts of the boundary. The boundary value problem

is given by

∇ · (σ∇u) = 0 on Ω = {(r, θ) : r ≤ a, 0 ≤ θ < 2π}
σ
∂u

∂n
= I [δ(θ − α)− δ(θ + α)]

This problem is a so-called inverse problem in which material properties are determined from

measurements of field quantities. This process can typically lead to images of anomalies that it is

important to identify - for example, tumors are known to have significantly higher conductivities

than normal tissue thus being able to identify regions with perturbed conductivities can lead to

images of tumors. Other applications could be the identification of plastic (low conductivity) land-

mines from the surrounding soil in which they are buried, or changes in conductivities to identify

mineral deposits.

3 Green’s function assuming a uniform conductivity

Solve the boundary value problem assuming σ = const

∇2u = 0 on Ω = {(r, θ) : r ≤ a, 0 ≤ θ < 2π}
σ
∂u

∂n
= I [δ(θ − α)− δ(θ + α)]

to obtain the following expression for u(r, θ) :

u(r, θ) =
Ia

2πσ
log

"
a2 + r2 − 2ar cos(θ + α)

a2 + r2 − 2ar cos(θ − α)

#

a) For the special case of axial stimulation α = π/2, show that this solution reduces to

u(r, θ) =
Ia

2πσ
log

"
a2 + r2 + 2ar sin θ

a2 + r2 − 2ar sin θ

#
It is also convenient to express the above solution in terms of an angle φ = θ− π

2
which is measured

relative to the axis along which the two currents are being applied. In this case the solution

becomes:

uπ
2
(r,φ) =

aI

2πσ
log

"
a2 + r2 + 2ar cosφ

a2 + r2 − 2ar cosφ

#
(1)
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b) If the x axis is parallel to the stimulating axis show that the equipotential lines u = A = const

are circles centered on the x−axis of the form

(x+ aκ)2 + y2 =
4a2γ

(1− γ)2
, where γ = eA and κ =

1 + γ

1− γ

Interpret and sketch the cases A > 0, A = 0, and A < 0.

c) If the x axis is parallel to the stimulating axis show that a given point (x, y) within the circle

will find itself on the level set that passes through the points (X,Y ) on the boundary of the circle

r = a, where

X =
2a2x

(x2 + y2 + a2)
, and Y = ±

p
a2 −X2 (2)

4 The Sensitivity Theorem

4.1 Measurement assuming a perturbation to the uniform state

1) Measurements: Assume that the conductivity σ̂ can be represented as a perturbation ∆σ to

the uniform state σ, i.e., σ̂ = σ +∆σ

∇ · (σ̂∇v1) = 0 on Ω = {(r, θ) : r ≤ a, 0 ≤ θ < 2π}
σ̂
∂v1

∂n
= I

∙
δ(θ − π

2
)− δ(θ +

π

2
)

¸
Now assume that the voltage is measured at two points along the boundary (r, θ) = (a, 0) and

(r, θ) = (a, π
8
) say, and that the impedance difference is given by

ẑ0 =
1

I

µ
v1(a,

π

8
)− v1(a, 0)

¶
=
∆v1

I

2) Nominal field: Assume a uniform conductivity σ = const and define the corresponding poten-

tial u1 as the solution to the boundary value problem

∇ · (σ∇u1) = 0 on Ω = {(r, θ) : r ≤ a, 0 ≤ θ < 2π}
σ
∂u1

∂n
= I

∙
δ(θ − π

2
)− δ(θ +

π

2
)

¸
Now evaluate the voltage at the two points along the boundary (r, θ) = (a, 0) and (r, θ) = (a, π

8
),

and the corresponding impedance difference is given by

z0 =
1

I

µ
u1(a,

π

8
)− u1(a, 0)

¶
=
∆u1

I
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3) Reciprocity field: Assume a conductivity σ̂ and define the potential v0 as the solution to the

boundary value problem

∇ · (σ̂∇v0) = 0 on Ω = {(r, θ) : r ≤ a, 0 ≤ θ < 2π}
σ̂
∂v0

∂n
= I

∙
δ(θ − π

8
)− δ(θ)

¸
in which current is assumed to be applied to the boundary points at which the voltage measurements

are taken.

Now use the divergence theorem to show that for given functions g,ψ, and φZ
Ω

ψ∇ · (g∇φ)dA =
Z
∂Ω

ψg
∂φ

∂n
d`−

Z
Ω

g∇ψ ·∇φdA (3)

Now let ψ = v0, g = σ and φ = u1 in (3) and subtract the result from (3) with ψ = u1, g = σ̂

and φ = v0 to obtain an expression for the difference between ∆u1 and v0(a,
π
2
) − v0(a,−π

2
) in

terms of the integral
R
Ω

∆σ∇u1 ·∇v0dA. Similarly, let ψ = v0, g = σ̂ and φ = v1 in (3) and subtract

the result from (3) with ψ = v1, g = σ̂ and φ = v0 to obtain an expression for the difference

v0(a,
π
2
)− v0(a,−π

2
) in terms of ∆v1.

Finally, derive the so-called sensitivity theorem

ẑ0 − z0 = 1

I
(∆v1 −∆u1) = − 1

I2

Z
Ω

∆σ∇u1 ·∇v0dA (4)

Since we do not know σ̂ it is impossible to determine ∇v0 in (4). In this case we assume that
σ̂ = σ+∆σ where σ À ∆σ so that the change in conductivity ∆σ represents a small perturbation
to the uniform state σ.Thus v0(σ̂) = v0(σ) + ∆σ

δv0
δσ
+ O(∆σ2) = u0(σ) + ∆σ

δu0
δσ
+ · · · where u0

is the field obtained with a uniform conductivity σ and in which currents are applied at the same

points along the boundary as for v0 (i.e., σ
∂u0
∂n

= I
£
δ(θ − π

8
)− δ(θ)

¤
). In this case the sensitivity

theorem assumes the following approximate form

ẑ0 − z0 = 1

I
(∆v1 −∆u1) ' − 1

I2

Z
Ω

∆σ∇u1 ·∇u0dA+O(∆σ2) (5)

4.1.1 Discretization, level sets and the back-projection theorem

Firstly break the domain Ω into N elemental regions Ωi on each of which ∆σ is assumed to be

constant, i.e. Ω =
NS
i=1
Ωi. Assuming M measurements the approximate sensitivity theorem can be

reduced to the form

S∆σ = ∆z

in which S is the sensitivity matrix whose elements are defined by Smi =
R
Ωi

∇u1·∇um0 dA where um0 is
the field associated with currents located at the m−th measurement pair. This under-determined
system could be solved by least squares STS∆σ = ST∆z, but STS a very poorly conditioned

matrix.

Back Projection:
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Figure 1:

1. One very special case results from the situation in which the boundaries of the subdomains

Ωi are defined by the level sets of the homogeneous source field u1 (see figure 1).

Now use the divergence theorem to prove the following results:

Claim 1:
R
T

∇u1 ·∇u0dA = 0 =
R
B

∇u1 ·∇u0dA
Claim 2:

R
D

∇u1 ·∇u0dA = I
σ

¡
u1(a,

π
8
)− u1(a, 0)

¢
= I

σ
∆u1

Claim 3: ẑ0 − z0 = 1
I
(∆v1 −∆u1) ' − 1

I2

R
Ω

∆σ∇u1 ·∇u0dA = −∆σD
Iσ
∆u1

Now combine these results to establish the back-projection formula for the “element” D :

∆σD = −σ
µ
∆v1 −∆u1
∆u1

¶
A code to implement the backprojection algorithm:

2.1. (a) Download the data file Z.dat from my web site: www.math.ubc.ca/˜peirce. under math

406. This file contains the sequence of “measured data” which were generated using a

finite element program. The files contains 128 = 16 × 8 data points which represent
the voltage differences for 16 terminals uniformly distributed along the boundary of the

circle. By symmetry, we can only obtain 8 independent axially distributed stimulating

pairs k − k0. For each of these 8 axial orientations, we have 16 measurements as shown
in the figure 2below.

The data in Z.dat are organized as follows. The first of 16 elements correspond to the

first axial pair located along the x axis i.e. φ = 0. Thus Z1 = the voltage difference

between the stimulating axis T1 and the next terminal marked T2. The subsequent 15

elements represent the voltage differences:

Zk = uk+1 − uk for k = 1, . . . , 16

The next 16 elements in Z.dat are those obtained for the same stimulating experiment

but with the stimulating axis along φ = 2π
16
. In this case the same convention was used
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Figure 2:

to number the terminals starting with k = 1 for the stimulating axis. For the second

axial pair the elements of Z.dat are:

Z16+k = uk+1 − uk for k = 1, . . . , 16
The remainder of the data in the file correspond to the voltage pairs for the stimulating

axes oriented along φ = n
³
2π
16

´
, n = 2, . . . , 7.

You will notice that the voltage differences that involve one of the terminals along the

stimulating axis are infinite at the boundary. These have been set to some small number

² = 10−9 so that they have little effect on the data. When you code in the uniform
solution given in (1) you should allocate the same values to these so that these voltages

have no contribution.

(b) Now implement the back projection procedure described in class. Divide the circle Ωa
with a = 1 into “pixels” (it may help to use polar coordinates). The for each pixel

use the formulae (2) to locate the point (X,Y ) on the boundary of the circle at which

the level set intersects the boundary. This enables you to trap the pixel between two

terminals so that the ∆σ that applies at the pixel can be determined using the voltage

measurements for those two terminals according to the formula:

∆σ = −σ
µ
∆v1

∆u1
− 1

¶
where ∆v1 are the voltage measurements that come from the experiment (i.e. Z.dat)

and ∆u1 are the corresponding voltage differences calculated using the uniform solution

(you will have to constuct a similar vector to Z.dat perhaps Zh which contains the

voltage differences for a homogeneous medium). Assume that σ = 1 and that I =

1 (to be consistent with the measurements). Since the medium associated with u1
is homogeneous, only 16 such measurements for one axial pair are needed since the

results for the other 7 are identical by symmetry. Accumulate all the ∆σ for all the

measurements over all pixels and then plot the contours of the accumulated σ(x, y) values

over all pixels in the circle. This should, if you have coded the algorithm correctly, yield

an image of where the anomaly is.
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