
1 Math 406, Project 1 Due Nov 16 th: Mold filling problems

2 Problem description

We consider a class of boundary value problems (BVP) for p(r, t) of the form

D∆p = D
1

r
(rpr)r = g(r, t) where r0 < r < R(t) (1)

Left BC: Specified pressure: p(r0, t) = p0 (2)

Right BC : p(R(t), t) = 0 (3)

Initial Condition : p(r, 0) = 0 at t = 0 (4)

Here ∆p is the Laplacian, which reduces to an ordinary differential operator since the problem is

assumed to be radially symmetric. This boundary value problem represents the pressure distribu-

tion within a circular fluid-filled zone occupying the cylindrical region r0 < r < R(t),−w02 < z < w0
2

between two parallel plates a distance w0 apart and r0 is the radius of the tube through which the

fluid is pumped. The flow velocity, according to Poiseuille’s law, is given by

v = −w
2
0

μ0
dp

dr
(5)

Here μ0 = 12μ is the scaled fluid viscosity and the velocity is obtained by integrating the parallel
plate solution to the Navier Stokes equations in the z directions across the gap between the plates.

Associated with the Poiseuille velocity is the fluid flux within the parallel disks, which is given by

q = w0v = −w
3
0

μ0
dp

dr
= −Ddp

dr
, where D =

w30
μ0

The ODE (1) expresses the conservation of mass in which the flux gradient is balanced by the

sources or sinks g(r, t) distributed within the expanding domain r0 < r < R(t). Though the BVP

is relatively simple to solve, the fact that the extent of the domain is unknown complicates the

problem considerably. This type of problem is known as a “free boundary problem” or “moving

boundary problem”. At the moving front Poiseuille’s law provides the so-called Stefan condition

for the front velocity:

Ṙ(t) = q(R(t))/w0 (6)

3 Simple solutions without distributed sources or sinks

Assuming no distributed source/sink term (i.e. g(r, t) = 0) determine the pressure distribution

p(r, t), the velocity Ṙ(t) of the moving front, and an expression for R(t). Plot the exact solutions

R(t) for the parameters: w0 = μ0 = p0 = 1 and r0 = 0.1 over the time interval 0 < t < 200. You
will need to use Newton’s method to achieve this. Now plot p(r, t = 200).
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4 Mold filling with fluid loss

Assume that fluid is being lost through the parallel plates via a diffusion process that leads to a

sink term of the form

g(r, t) =
C 0H(t− t0(r))p

t− t0(r)
where H(t) is the Heaviside function, C 0 is a given constant, and t0(r) is the time at which the
fluid font arrives at the ring of radius r. Thus t0(r) = R

−1(r) the inverse function of R(t).
1. Use the Green’s function corresponding to the ODE (1) and the boundary conditions (2-3)to

determine an expression for p(r, t) in terms of R(t) and g(r, t).

2. Use this expression to determine an expression for pr(R). Now use the Stefan condi-

tion (6) to derive an expression for the front velocity Ṙ(t). In the integral that results use the

transformation of variables ρ = R(τ), dρ = Ṙ(τ)dτ to arrive at an Abel integral equation for

φ(R, Ṙ) = R log(R/r0)Ṙof the form:

φ(R, Ṙ) = A+B

tZ
0

φ(R(τ), Ṙ(τ))√
t− τ

dτ (7)

3. Since this integral equation is in the form of a Laplace Transform convolution take the Laplace

transform of (7) to determine Laplace transform of φ(t). The Laplace transform L( 1
t1/2
) =

¡
π
s

¢1/2
may prove useful.

4. Now invert the Laplace transform of φ to determine an expression for Ṙ(t) and thence an

expression for R(t). The inverse Laplace Transform L−1( 1
s+αs1/2

) = eα
2t erf c(αt1/2) and the integral

tZ
0

eα
2τ erf c(ατ1/2)dτ =

1

α2

³
eα

2t erf c(αt1/2)− 1
´
+
2t1/2

απ1/2

may prove useful. Now obtain an expression for p(r, t).

5. Assuming w0 = μ0 = C0 = p0 = 1, and r0 = 0.1 plot R(t) for 0 < t < 200. Now use quadgk
to determine p(r, t) and plot p(r, t) at t = 200.

5 Asymptotics and scaling

5.1 Scaling

By dimensional analysis and scaling it is frequently possible to derive the fundamental power law

relationships between the different variables in the model.

For the boundary value problem is of the form:

D
1

r
(rpr)r =

C 0H(t− t0(r))p
t− t0(r)

(8)

Introduce characteristic length, time, and pressure scales R∗, t∗ and p∗ = p0 and dimensionless

variables

x = R∗ρ, t = t∗τ, p(r, t) = p0Π(ρ, τ),
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to reduce (8) to the form

Gμ 1
ρ
(ρΠρ)ρ =

H(τ − τ0)√
τ − τ0

By requiring Gμ = 1 determine γ in the power law relationship R∗˜ t
γ
∗ . Include this asymptotic

estimate in your plot of the exact solution.
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