## MATH 406, HWK 5, Due 14 November 2018

1. Consider determining the eigenvalues for Laplace's equation:

$$
\begin{equation*}
-\Delta u=-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\lambda u \tag{1}
\end{equation*}
$$

on the region $\Omega$ subject to Dirichlet boundary condition:

$$
\begin{equation*}
u]_{\partial \Omega}=0 \tag{2}
\end{equation*}
$$

Starting with the weighted residual statement of this boundary value problem determine the appropriate weak statement of the problem. Consider a triangular tesselation of the domain $\Omega$ into triangles $T^{k}$ such that $\Omega=\cup T^{k}$. Now use the piecewise linear basis functions $\psi_{\alpha}^{k}(x, y)$ defined on the triangles $T^{k}$, which we developed in class, to arrive at a Galerkin approximation to this eigenvalue problem.

Now adapt the code supplied in FEM_PackD.zip by altering the function fempoid.m so that it calculates the eigenvalues of the Dirichlet problem on a unit circle. Determine the first 6 nonzero eigenvalues for the unit circle $\Omega=\{(r, \theta): r \leq 1,0 \leq \theta \leq 2 \pi\}$ using $\mathrm{n}=32$ elements and the meshing parameter $\mathrm{hmax}=2 \pi / \mathrm{n}$. Use tplot.m to plot the eigenfunctions associated with $\lambda_{0,1}, \lambda_{1,1}, \lambda_{2,1}$ and $\lambda_{0,2}$. Provide your code for the FEM formulation of the eigenvalue problem.

Note: Recall that the eigenvalues and eigenfunctions for the Dirichlet problem for a circle of radius $a$ are given by:

$$
\begin{aligned}
\lambda_{m, n} & =\left(j_{m, n} / a\right)^{2}, m=0,1,2, \ldots, n=1,2, \ldots \\
\phi_{m, n}(r, \theta) & =J_{m}\left(j_{m, n} / a\right)\left\{\begin{array}{c}
1 \text { for } m=0 \\
\cos m \theta \\
\sin m \theta
\end{array}\right.
\end{aligned}
$$

where $j_{m, n}$ is the $n$-th positive zero of the $m$-th Bessel $J_{m}$. Thus

$$
\lambda_{m, n}=\left[\begin{array}{c}
\lambda_{0,1}=(2.4048 / 1)^{2}=5.7831 \\
\lambda_{1,1}=\left(j_{1,1} / 1\right)^{2}=(3.8317)^{2}=14.682 \\
\lambda_{2,1}=\left(j_{2,1} / 1\right)^{2}=(5.1356)^{2}=26.374 \\
\lambda_{0,2}=\left(j_{0,2} / 1\right)^{2}=(5.5201)^{2}=30.472
\end{array}\right]
$$

Using $n=32$ nodes on the boundary in your FEM code for the Dirichlet problem complete the following table of Eigenvalues

$$
\lambda_{m, n}=\begin{array}{|l|l|}
\hline \text { Exact } & \text { FEM } \\
\hline \lambda_{0,1}=5.7831 & \\
\hline \lambda_{1,1}=14.682 & \\
\hline \lambda_{2,1}=26.374 & \\
\hline \lambda_{0,2}=30.472 & \\
\hline
\end{array}
$$

