1 Math 406: Ass. 1: Due Friday 21 Sept.

1. Least squares fitting - m-th degree polynomial through N points.

(a) Find a system of equations for the coefficients of an m-th degree polynomial that fits a function f at given data points $\left(x_{k}, f\left(x_{k}\right)\right), k=$ $1, \ldots, N$ in the least squares sense. Write the equations in matrix form. What is the size of the matrix ?
(b) Solve the system of equations using Matlab for $x_{k}=\{0,0.2,0.3,0.4,0.6,0.7\}$, $f(x)=\cos x$, and $m=4$ and 5 . Evaluate the resulting polynomial at $x=0.5$. Compare the answers to the "exact" value of $\cos x$. Use the MATLAB function "polyfit" to check the results.

2. Lagrange interpolating polynomial.

(a) Plot the Lagrange interpolating basis functions $l_{1}^{(5)}(x)$ and $l_{3}^{(5)}(x)(0<$ $x<0.7$), generated using $x_{k}=\{0,0.2,0.3,0.4,0.6,0.7\}$. Use markers to highlight points x_{k} on the plots.
(b) Plot the Lagrange interpolating polynomial $p_{5}(x)(0<x<0.7)$ that passes through the points $\left(x_{k}, f\left(x_{k}\right)\right), f(x)=\cos x$. Evaluate the resultant polynomial at $x=0.5$. Compare the answer to the result in problem 1 .
3. Finite Difference Tables: Let S_{N}^{k} denote the sum of the k th powers of the first N integers i.e.:

$$
S_{N}^{k}=\sum_{i=1}^{N} i^{k}
$$

Write a simple MATLAB program to evaluate these sums for a specified value of k for values of N from $1 \ldots k+3$. Now write MATLAB code to form the forward difference table (since the sample points are uniform). Notice that for each value of k the difference table terminates - why does this happen? For the special case $k=2$ extract the differences from your table and use the Gregory-Newton divided difference formula to derive the formula:

$$
S_{N}^{2}=\sum_{i=1}^{N} i^{2}=\frac{1}{6} N(2 N+1)(N+1)
$$

4. The pchip function in MATLAB: Piecewise Cubic Hermite interpolation assumes the following representation of a given function $f(x)$ in terms of the cubic basis functions $h_{i}^{(0)}$ and $h_{i}^{(1)}$:

$$
f(x) \approx h(x)=\sum_{i=0}^{N} f\left(x_{i}\right) h_{i}^{(0)}(x)+\sum_{i=0}^{N} f^{\prime}\left(x_{i}\right) h_{i}^{(1)}(x)
$$

where $h_{i}^{(0)}$ and $h_{i}^{(1)}$ are assumed to have the properties

$$
\left.\begin{array}{rr}
h_{i}^{(0)}\left(x_{j}\right)=\delta_{i j} & \frac{d}{d x} h_{i}^{(1)}\left(x_{j}\right)=\delta_{i j} \tag{1}\\
\frac{d}{d x} h_{i}^{(0)}\left(x_{j}\right)=0 & h_{i}^{(1)}\left(x_{j}\right)=0
\end{array}\right\}
$$

(a) Show that the expressions for these basis functions are given by

$$
\begin{aligned}
h_{i}^{(0)}(x) & =\frac{\left[\Delta x_{i}+2\left(x-x_{i}\right)\right]\left(x_{i+1}-x\right)^{2}}{\left(\Delta x_{i}\right)^{3}} \\
h_{i+1}^{(0)}(x) & =\frac{\left[\Delta x_{i}+2\left(x_{i+1}-x\right)\right]\left(x-x_{i}\right)^{2}}{\left(\Delta x_{i}\right)^{3}} \\
h_{i}^{(1)}(x) & =\frac{\left(x-x_{i}\right)\left(x_{i+1}-x\right)^{2}}{\left(\Delta x_{i}\right)^{2}} \\
h_{i+1}^{(1)}(x) & =-\frac{\left(x_{i+1}-x\right)\left(x-x_{i}\right)^{2}}{\left(\Delta x_{i}\right)^{2}}
\end{aligned}
$$

(b) In order to specify the interpolant it is necessary to supply both the function values $f\left(x_{i}\right)$ and the derivatives $f^{\prime}\left(x_{i}\right)$ at the interpolation points. Write a matlab function hermite $(x, y, y p, x i)$ that will evaluate the Piecewise Cubic Hermite interpolant of a function sampled at the points given by the vector x and whose values and derivatives are given by y and $y p$ respectively. Let $x i$ be the set of desired sample points. For the function $f(x)=x e^{-x}$ on the interval $[0,2]$ plot the Piecewise Cubic Hermite interpolant and the function f. Compare the value of the interpolant with the function at $x=1 / 2$ by completing the table

$f(1 / 2)$	
$h(1 / 2)$	

(c) It is often not possible to provide the derivatives $f^{\prime}\left(x_{i}\right)$ at the interpolation points. The pchip routine in MATLAB uses the following scheme to approximate the derivatives at the interpolation points. The slope at each interior node is taken to be a weighted harmonic mean of the slopes of the piecewise linear interpolant either side of the interior point. One-sided derivative conditions are imposed at the two end points. Now construct a pchip routine of your own to interpolate a function given only nodal values, constructing the weighted derivative approximations at the nodes and then calling your hermite routine.

