1. **Least squares fitting - m-th degree polynomial through N points.**

 (a) Find a system of equations for the coefficients of an m-th degree polynomial that fits a function \(f \) at given data points \((x_k, f(x_k)), k = 1, \ldots, N \) in the least squares sense. Write the equations in matrix form. What is the size of the matrix?

 (b) Solve the system of equations using Matlab for \(x_k = \{0, 0.2, 0.35, 0.5, 1\} \), \(f(x) = e^{-x} \), and \(m = 3 \). Evaluate the resulting polynomial at \(x = 0.7 \). Compare the answer to the “exact” value of \(e^{-0.7} \). Use the MATLAB function “polyfit” to check the results.

2. **Lagrange interpolating polynomial.**

 (a) Plot the Lagrange interpolating basis functions \(l_1^{(3)}(x) \) and \(l_3^{(3)}(x) \) \((0 < x < 1)\), generated using \(x_k = \{0, 0.2, 0.5, 1\} \). Use markers to highlight points \(x_k \) on the plots.

 (b) Plot the Lagrange interpolating polynomial \(p_3(x) \) \((0 < x < 1)\) that passes through the points \((x_k, f(x_k)) \), \(f(x) = e^{-x} \). Evaluate the resultant polynomial at \(x = 0.7 \). Compare the answer to the result in problem 1.

3. **Finite Difference Tables:** Let \(S_{N}^{k} \) denote the sum of the \(k \) th powers of the first \(N \) integers i.e.:

 \[
 S_{N}^{k} = \sum_{i=1}^{N} i^k
 \]

 Write a simple MATLAB program to evaluate these sums for a specified value of \(k \) for values of \(N \) from 1...\(k + 3 \). Now write MATLAB code to form the forward difference table (since the sample points are uniform). Notice that for each value of \(k \) the difference table terminates - why does this happen? For the special case \(k = 2 \) extract the differences from your table and use the Gregory-Newton divided difference formula to derive the formula:

 \[
 S_{N}^{3} = \sum_{i=1}^{N} i^2 = \frac{1}{6} N (N + 1)(2N + 1)
 \]

4. **Newton’s Divided Difference Formula:** Write a MATLAB routine \(yi=ndiff(x,y,xi) \) to determine the Newton divided difference polynomial interpolant of a function \(y = f(x) \) whose values at the vector of sample points \(x \) are given in the vector \(y \), while \(xi \) is the vector at which the desired interpolated values are requested. Illustrate your results with the function \(f(x) = (1 + x^4) \exp(-x) \) on the interval \([-1, 1]\) with \(N = 4 \) uniformly distributed points \(x=-1:(2/(N-1)):1 \). You can check your divided difference code using the MATLAB function \texttt{polyfit}, which should
give precisely the same results for the interpolating polynomial as Nddiff. Provide the following values

\[
\begin{array}{c|c|c|c}
 x & -0.6 & 0 & 0.4 \\
 p_N(x) & & & \\
\end{array}
\]