1. Solve the following inhomogeneous initial boundary value problem for the heat equation:

\[u_t = u_{xx} + 1, \quad 0 < x < \frac{\pi}{2}, \quad t > 0 \]
\[u(0, t) = t, \quad u_x\left(\frac{\pi}{2}, t\right) = e^{-\gamma t}, \quad 0 < \gamma < 1 \]
\[u(x, 0) = x \]

by using an appropriate expansion in terms of the appropriate eigenfunctions. \[60 \text{ marks}\]

2. Consider the following initial boundary value problem for the wave equation:

\[u_{tt} = u_{xx} + \gamma \sin(x) + x/\pi, \quad 0 < x < \pi, \quad t > 0 \]
\[u(0, t) = 0, \quad u(\pi, t) = \frac{t^2}{2} \]
\[u(x, 0) = 0, \quad u_t(x, 0) = \sin(3x) \]

a) Determine a simple function \(w(x, t) \) that satisfies the inhomogeneous boundary conditions.
b) Let \(u(x, t) = w(x, t) + v(x, t) \) and determine the corresponding boundary value problem for \(v(x, t) \).
c) Use an eigenfunction expansion (or extract a steady state solution for the boundary value problem for \(v(x, t) \) and use separation of variables) to solve for \(v(x, t) \) and therefore \(u(x, t) \). \[40 \text{ marks}\]

d) **Bonus Marks:** Assuming \(\gamma = 0 \), use D’Alembert’s solution (see the formula sheet) to determine the corresponding \(v(x, t) \) and therefore \(u(x, t) \). \[5 \text{ marks}\]