Zero Stability: A difference scheme for which perturbations remain bounded in the limit h — 0
is said to be 0-stable.

e You can check O-stability of an N step method
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By determining the roots of the polynomial Py(8) = 3 ax#*. If the roots of P,(#) are such that

|8] <1 and those for which |#] = 1 are simple then (¥*) is O-stable.
Examples:

e The Euler Scheme is 0-stable since: P;(€) =6 — 1 = 0 has only one root on the unit disk.

e The Second order scheme Y, 1o —2Y, 11 + Y, = %)‘(an —Y,) is not O-stable since Py(6) =
(6 —1)2 =0 has 6§ = 1 as a double root.

Theorem: (Dahlquist) Consistency + 0-stability —convergence. In particular, a O-stable consis-
tent method converges with the order of its truncation error.

Problem with practical use of the convergence theorem:
Eg: Consider the model problem y' = \y y(0) =1 — y(x) = .
Euler solution:

Y, = Y1 +h\Y,q, Yo=1
= (1+h\NY,21
T multiplication factor G =1+ A\h
— (1+hN)"Y (+)

Now let n — 0o, h — 0 in such a way that nh = X a constant, then

nhﬂngo(l + hA)" = nlin;oexp {X/\ Xo/n } =e

so the method converges as h — 0.
But in practice h # 0. Say A= —10and h =1

Y, =(-9)"
which blows up and oscillates!

From (*) we observe that the solution will decay provided |G(h\)| = |1 + hA| < 1.

If Misreal then —1 <1+ hAA<1=|-2<hA<O0

Absolute Stability:



Recall: If Re(\) < 0 then exact solutions of y = Ay decay with time i.e., ygx(x) = yoe~ M.

Requirement of a difference scheme-asymptotic stability:

If Re(A) < O then ideally we would like |G(hA)| < 1 for all h. A method that satisfies this
requirement is called asymptotically stable or A-stable.

Is FE A-stable? No.

Eg. A = —10, h =1, |Y;| — co. But the news is not all bad, if Re(\) < 0 then there exist a
range of values of h for which |G(hA)| < 1.
Stability Regions:

The set of points z = h in the complex plane for which |G(z)| < 1.
Stability region for FF:

For what values of z € C are |G(z)| = |1+ 2| < 1.

Method 1. B
z=a+if=|l+z2=1+a)+3 <1
A
hA =
2 -1 0
Method 2. G z2=G—1

Using a conformal map:

G=1l4+2=2=G—1. Ww\ G| < 1 m
N

‘Usefully stable’: A method is usefully stable for a particular problem with eigenvalues A; and
choice of timestep h if h); is in the stability region of the method for all A;.

Eg: Forward Euler ' =)y yo=1 y=e

1. A = —10 for stability we require that A\h: —2 < Ah <0

=2<—h10<0. . h<i



S~ | Ah

2. XN =2(—1+1i) =22 ¢B7/4
Point on BDY of disk is h2(—1+14) = (=1 +1)
h<i

N
N

3. A =1 for no choice of h can Ah = hi be brought into the stability region — so Euler’s method
will not be useful for oscillatory systems ' = iy = y = € which occur in models of wave

phenomena.
Generalization of Euler’s method
FE
Higher Order
‘1-Step’ Difference Multistep Methods Predictor Corrector
e Improved Euler e Leapfrog e Adams-Moulton e Improved Euler
e Trapezoidal Scheme e Adams-Bashforth
e Backward Euler e Backward Difference
e A-Method

e Modified Euler

Higher order DCE
e RK

Different approximations to y'=f(z,y(z)) Different Philosophy

Schemes based on the Trapezoidal Rule:
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Using the integral form of ¢ = f(z,y(z))

Tn+1

Y(ensr) = y(xn)+*t/)f(w7y($ﬂdx

Tn

= Yl + 5 1 ey () + F @iy ()] + O

There are a number of different ways we can choose to exploit ()

(1)
The Improved Euler-Explicit/ Heun’s method (RK-2)

Predictor Y11 =Y, + hf(an, Yy) 2 Stage
Corrector  Yyi1 =Y, + 2 [f (xn, Vo) + f (Tnt1, Yins1)]

Yn+1
7 Yo

ol Yn+1

e Second order accurate

e Explicit

" Tn+1

e If we keep replacing Y ,, .1 by Y,,,1 until convergence, we obtain a ‘predictor-corrector’ method.

Truncation Error for the Improved Euler Scheme:

e General Problem: y' = f(z,y), y(0) = yo

Yiei = Y+ h f (2r, Vi) + f(wpg1, Yi + hf(zr, Yi))]

2
Ye+1 — Yk 1
Ti(h) = +T ~3 U (@r, k) + [(@ra1, yp + hf (2, yk))]
2 3
Y+ byl + Syl Syl —

_ — 5 2w+ he+ 1)

h
= W)+ g (e~ et fu)L,) +O0?)
Ty(h) = O(h?)

e On Model Problem — Simpler: y' = \y y(0) = yo

— 1
Ti(h) = %Lhyk ~3 Ayr + A (ke + hAye)]
yk+hy§€+h—;yg+§y§!+...— A2

Yk
= — Ay + A=
h Yk + 5 Yk

h
= (yp — \yk) + B (yi — Nyx) + O(h?)
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(2) The Trapezoidal Scheme — ‘Crank-Nicholson’ Scheme — Implicit

h
Yori =Y+ 2 [f(xm Yo) + f(@ng1, Yn+1)]

T Don’t know this value — Implicit

We can solve this nonlinear equation (at each timestep) using Newton’s method:

Let g(Yn41) = Yot1 — % [f(@n, Yn) + f(@Zn+t1, Yot

e Second Order Accurate

Tn(h) =

Yfill = Yn(i)l -9 (Yé-k;)l) / g (er-]%)

(f (Tns1,Ynt1) = f (rcn o hyyn + hyl, + Byl 4 ))

Yn+1 — Yn 1
+1h - 5 [f(xmyn) + f(xn-‘rbyn-‘rl]
Yn + byl + Byl By, 1
n*En S ~ 5Pt hentr s |, +o0?)

(y7/’7, - fn) +

Tn

g <y§{ —(fat 1) ) +0().

e A quicker method to check the truncation error (useful for multistep methods but not very
useful for multistage RK method).

I y7/1+1 = fot1

— 1
M - 5 {fn + fn+1}

h
2 3
Yn+hyh + Byl By o~y 1,
h _i(yn+yn+l)

h h?2 1 h2
y2+2y${+Gy,’{’+-~—2(y£+yé+hyﬂ+21/12/)
h'2 "
— Yy T
12

T Error constant

Note: Improved Euler and the Trapezoidal Schemes are both second order accurate but the Im-
proved Euler Scheme is explicit while the Trapezoidal Scheme is implicit. Then why would we
bother using the Trapezoidal Scheme if we have to solve a nonlinear equation at each timestep?

Answer: Stability
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