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Lecture 7: Singular Integrals, Open Quadrature rules, and
Gauss Quadrature

(Compiled 18 September 2012)

In this lecture we discuss the evaluation of singular integrals using so-called open quadrature formulae. We also discuss

various techniques to obtain more accurate approximations to singular integrals such as subtracting out the singularity

and transformations to non singular integrals. We next introduce Gauss Integration, which exploits the orthogonality

properties of orthogonal polynomials in order to obtain integration rules that can integrate a polynomial of degree 2N−1

exactly using only N sample points. We also discuss integration on infinite integrals and adaptive integration.

Key Concepts: Singular Integrals, Open Newton-Cotes Formulae, Gauss Integration.

7 Singular Integrals, Open Quadrature rules, and Gauss Quadrature

7.1 Integrating functions with singularities

Consider evaluating singular integrals of the form I =

1∫

0

e−x

x2/3
dx

We cannot just use the trapezoidal rule in this case as f0 → ∞. Instead we use what are called open integration

formulae that do not use the endpoints in the numerical approximation of the integrals.

7.1.1 Open Newton-Cotes formulae

The Midpoint rule

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) + · · ·

x0+h/2∫

x0−h/2

f(x)dx =

x0+h/2∫

x0−h/2

f0 + (x− x0)f ′0 +
(x− x0)2

2
f ′′(ξ)dx

= hf0 +

h/2∫

−h/2

sf ′0 +
s2

2
f ′′(ξ) dξ

= hf0 +
2s3

6

∣∣∣∣
1

0

f ′′(ξ) = hf0 +
1
3

h3

8
f ′′(ξ) = hf0 +

h3

24
f ′′(ξ)



2

a x1 x2 xN

The Composite Midpoint rule

I =

b∫

a

f(x) dx =
N∑

k=1

xk+h/2∫

xk−h/2

f(x)dx

=
N∑

k=1

h/2∫

−h/2

f(xk + s)ds

=
N∑

k=1

h/2∫

−h/2

f(xk) + sf ′(xk) +
s2

2
f ′′(xk) + · · · ds

= h

N∑

k=1

f(xk) +
N∑

k=1

f ′′(xk)
h3

3 · 23

= h

N∑

k=1

f(xk) +
h3

24

N∑

k=1

f ′′(xk)

= h

N∑

k=1

f(xk) +
h2

24

b∫

a

f ′′(x) dx

= h

N∑

k=1

f(xk) +
h2

24
{f ′(b)− f ′(a)}

For 1 cell

xk+h/2∫

xk−h/2

f(x) dx = hf(xk) +
h3

24
f ′′(xk)

Open Newton-Cotes Formulae:
x2∫

x0

f(x) dx = 2hf1 +
(2h)3

24
f ′′(ξ) MidpointRule ξ ∈ (x0, x1)

x3∫

x0

f(x) dx =
3h

2
(f1 + f2) +

h3

4
f (2)(ξ) ξ ∈ (x0, x3)

x4∫

x0

f(x) dx =
4h

3
(2f1 − f2 + 2f3) +

28h5

90
f (4)(ξ) ξ ∈ (x0, x4)
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7.1.2 Change of variable

(Eg.1) I =

1∫

0

x−1/nf(x) dx n ≥ 2 f(tn) t−1ntn−1dt

let t = x1/n x = tn dx = ntn−1dt

∴ I = n

1∫

0

f(tn)tn−2dt which is a proper integral for n ≥ 2

(Eg. 2) I =

1∫

−1

f(x)
(1− x2)1/2

dx x = cos t dx = − sin t dt

=

π∫

0

f(cos t) dt proper

(Eg. 3) I =

1∫

0

f(x)
[x(1− x)]1/2

dx x = sin2 t dx = 2 sin t cos t dt

=

π/2∫

0

f(sin2 t)2 sin t cos t dt

sin t cos t
= 2

π/2∫

0

f(sin2 t)dt.

7.1.3 Subtracting the singularity

Consider evaluating the integral

I =

1∫

0

ex

x1/2
dx

We note that close to the singular point x = 0 in the integrand, the numerator can be expanded about the singular

point in the Taylor series: ex = 1 + x +
x2

2!
+ . . . . We now choose to rearrange the integrand as follows

I =

1∫

0

ex

x1/2
dx =

1∫

0

1
x1/2

dx +

1∫

0

(ex − 1)
x1/2

dx

= 2 +

1∫

0

ex − 1
x1/2

dx

Using this decomposition we can thus evaluate the singular part analytically and the non-singular part numerically.

We can expect to obtain a more accurate result than simply using an open integration formula and ignoring the

singularity. Since the accuracy of the midpoint rule, for example, depends on the second derivative of the integrand
(ex−1)
x1/2 , we cannot expect even the midpoint rule to achieve its theoretical rate of convergence for this integral. To
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retrieve the O(h2) accuracy of the Midpoint rule we need to subtract at least three terms as follows:

I =

1∫

0

ex

x1/2
dx

= 2 +

1∫

0

x

x1/2
dx +

1∫

0

x2/2
x1/2

dx +

1∫

0

ex − 1− x− x2/2
x1/2

dx

= 2 +
2
3
x3/2

∣∣∣∣
1

0

+
2
5

x3/2

2

∣∣∣∣
1

0

+

1∫

0

ex − 1− x− x2/2
x1/2

dx

=
43
15

+

1∫

0

ex − 1− x− x2/2
x1/2

dx

In figure 1 we plot the errors obtained when the midpoint rule is used directly as well as the errors when 1 and 3

terms are subtracted from the integrand. The second order accuracy only returns when 3 terms are removed so that

g′′ is bounded on [0, 1], where g(x) = ex−1−x−x2/2
x1/2 .
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Figure 1. Plots of the errors vs h when the midpoint rule is used directly, and when 1 and 3 terms are removed
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7.2 Gauss Quadrature

7.2.1 Orthogonal polynomials

There exist families of polynomial functions {φn(x)}∞n=0 each of which are orthogonal with respect to integration

over an interval [a, b] with weight w(x) : i.e.:

b∫

a

φm(x)φn(x)w(x)dx = δmnCn.

Eg. (1) Legendre Polynomials: {Pn(x)} ; [a, b] = [−1, 1]; w(x) ≡ 1.

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), . . .

In general Pn(x) can be constructed by the recursion:

Pn(x) =
2n− 1

n
xPn−1(x)− (n− 1)

n
Pn−2(x).

ODE: (1 + x2)y′′ − 2xy′ + (n + 1)ny = 0; y = Pn(x)

Eg. (2) Laguerre Polynomials: {Ln(x)}; [a, b) = [0,∞); w(x) = e−x

L0(x) = 1; L1(x) = 1− x, L2(x) = 2− 4x + x2, . . .

Recursion relation:

Ln(x) = (2n− x− 1)Ln−1(x)− (n− 1)2Ln−2(x).

ODE: xy′′ + (1− x)y′ + ny = 0; y = Ln(x).

Eg. (3) Chebyshev Polynomials: {Tn(x)}, [a, b] = [−1, 1], w(x) = 1/
√

1− x2

Definition: Tn(x) = cos nθ where θ = cos−1 x.

T0(x) = 1, T1(x) = x, T2(x) = cos 2θ = 2 cos2 θ − 1 = 2x2 − 1, . . .

The recursion relation follows from the identity: cos nθ = 2 cos θ cos(n− 1)θ − cos(n− 1)

Tn(x) = 2xTn−1(x)− Tn−2(x)

ODE: (1− x2)y′′ − xy′ + n2y = 0 y = Tn(x)
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Hermite Polynomials: {Hn(x)} (a, b) = (−∞,∞) w(x) = e−x2

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . .

Recursion: Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x)

ODE: y′′ − 2xy′ + 2ny = 0 y = Hn(x).

7.2.2 Expansion of an arbitrary polynomial in terms of orthogonal polynomials

Let qk(x) = α0 + α1x + · · · + αkxk be any polynomial of degree k. Then since the orthogonal polynomials {φj(x)}
are linearly independent, we can also express qk(x) as a linear combination of {φj(x)}, j = 0, . . . , k as follows:

qk(x) = α0 + α1x + · · ·+ αkxk

= β0φ0 + β1φ1 + · · ·+ βkφk. (∗)

Example: Expand q2(x) = −2x2 + 2x− 1 in terms of Legendre Polynomials Pk(x)

q2(x) = −2x2 + 2x− 1 in terms of Legendre polynomials

= β0 + β1x + β2
1
2
(3x2 − 1)

=
(

β0 − β2

2

)
+ β1x +

3β2

2
x2

3β2

2
= −2 ⇒ β2 = −4

3
β1 = 2

β0 +
2
3

= −1 ⇒ β0 = −5
3

∴ q2(x) = −5
3
P0(x) + 2P1(x)− 4

3
P2(x)

7.2.3 φn(x) is orthogonal w.r.t the weight w(x) to all lower degree polynomials qk(x), k = 0, . . . , n− 1

The fact that any polynomial qk(x) can be expanded as a linear combination of orthogonal polynomials {φj(x)}k
j=0

up to degree k, as was shown in the expansion (∗), implies that an orthogonal polynomial φn(x) is orthogonal

with respect to the weight w(x) to any polynomial of a lower degree than n. In other words, if {qk(x)}n−1
k=0 are any

polynomials of degrees k = 0, . . . , n− 1, then

b∫

a

w(x)φn(x)qk(x)dx = 0 for k = 0, . . . , n− 1
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To see this, consider any kth degree polynomial qk(x) and use use the expansion (∗) to write

b∫

a

w(x)φn(x)qk(x)dx =

b∫

a

w(x)φn(x)
k∑

m=0

βkφm(x)dx

=
k∑

m=0

βk

b∫

a

w(x)φn(x)φm(x)dx

= 0

The latter integrals vanish because of the orthogonality of polynomials of distinct degree with respect to the weight

w(x).

7.3 Gauss-Legendre quadrature

Idea behind Gauss Quadrature:

We assume that the approximation of
b∫

a

f(x)dx is given by:

b∫

a

f(x)dx ≈
N∑

i=0

wif(xi)

where the wi are weights given to the function values f(xi). If we regard the xi as free then can we do better by

choosing these xi appropriately?

Shift to the interval [−1, 1] : There is no loss of generality in assuming that [a, b] = [−1, 1] since the change of variables

x ∈ [a, b] to t ∈ [−1, 1]:

x =
t(b− a)

2
+

(a + b)
2

will reduce the integral to
1∫
−1

F (t)dt where F (t) = (b−a)
2 f(x(t))

Let us approximate f on [−1, 1] by a polynomial of degree M − 1 and integrate the resulting polynomial. The error

involved is of the form:
1∫

−1

f(x)dx =

1∫

−1

pM−1(x)dx +
f (M)(ξ)

M !

1∫

−1

(x− x1) . . . (x− xM )dx

=
M∑

k=1

fk

1∫

−1

`k(x)dx +

1∫

−1

f [x1, . . . , xM , x](x− x1) . . . (x− xM )dx

=
M∑

k=1

fkwk +

1∫

−1

f [x1, . . . , xM , x](x− x1) . . . (x− xM )dx where `k(x) =
M∏

j=1
j 6=k

(x− xj)/xk − xj)

and wk =

1∫

−1

`k(x)dx.

This formula will be exact if f is a polynomial of degree M − 1 since then PM−1(x) ≡ f(x).
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Now let M = 2N and choose x1, . . . , xN to be the zeros of the Legendre polynomial PN (x) of degree N . In this

case, all the weights wk = 0 for k ≥ N + 1 as can be seen from the calculation

wk =

1∫

−1

`k(x)dx =

1∫

−1

︷ ︸︸ ︷
(x− x1) . . . (x− xN )

︷ ︸︸ ︷
(x− xN+1) . . . (x− xk−1)(x− xk+1) . . . (x− xM )

(xk − x1) . . . (xk − xN+1) . . . (xk − xM )
dx k ≥ N + 1

= C̃k

1∫

−1

PN (x)qk,N−1(x) dx

= C̃k

1∫

−1

PN (x)

(
N−1∑

S=0

βSPS(x)

)
dx

= 0 no matter where we choose the xN+1, . . . , x2N .

∴
1∫

−1

f(x) dx =
N∑

k=1

fkwk +
f (2N)(ξ)
(2N)!

1∫

−1

(x− x1)2 . . . (x− xN )2 dx

=
N∑

k=1

fkwk +
f (2N)(ξ)
(2N)!

1∫

−1

C2
N [PN (x)]2 dx

or

1∫

−1

f(x) dx =
N∑

k=1

fkwk +
22N+1(N !)4

(2N + 1)[(2N)!]3
f (2N)(ξ).

Thus for only N points we can integrate a polynomial of degree 2N − 1 exactly. For arbitrarily chosen sample points

{xk}, we would have required 2N points to achieve the same accuracy.

Expressions for the abscissae and the weights

The {xk}N
k=1 are the zeros of the Legendre polynomial of degree N .

The weights wk =
2(1− x2

k)
(N + 1)2 [PN+1(xk)]2

m xk wk

1 0 2

2 ±0.5773502692 = 1/
√

3 1

3 0 0.88̇ 8/9

±0.7745966692 =
√

3
5 0.55̇ 5/9

...
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7.3.1 Generating the coefficients and weights using the method of undetermined coefficients

N=2: This quadrature rule must integrate a polynomial of degree 2× 2− 1 = 3 exactly
1∫

−1

a0 + a1x + a2x
2 + a3x

3dx = 2a0 +
2
3
a2

||
w1f(x1) + w2f(x2) w1 = w2 x1 = −x2

= 2w1(a0 + a2x
2
1)

w1 = 1

x2
1 =

1
3

x1 =
1√
3

N=2: This quadrature rule must integrate a polynomial of degree 5 exactly.
1∫

−1

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5dx = 2a0 +
2
3
a2 +

2
5
a4

||
2w1

(
a0 + a2x

2
1 + a4x

4
1

)
+ w2a0

2w1 + w2 = 2

2w1x
2
1 = 2

3

2w1x
4
1 = 2

5




⇒

x2
1 =

2
5

2/3 = 3
5 ⇒ x1 = −

√
3
5

2w1
3
5 = 2

3 ⇒ w1 = 5
9

2.5
9 + w2 = 2 ⇒ w2 = 8

9
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Example: Evaluate I =
1∫
0

sinπx dx

We make use of the transformation of variables x = t(1−0)
2 + 1

2 = t+1
2 t = 2x− 1

I =

1∫

0

sin πx dx = 0.636619772

=
1
2

1∫

−1

sin π
(1 + t)

2
dt

≈ 1
2


sin π

(
1− 1√

3

)

2
+ sin π

(
1 + 1√

3

)

2




= cos
π

2
√

3
= 0.616190509

Compare this result with the trapezium rule using two function evaluations, which yields =0.5000000. Now using

three point Gauss-Legendre formula:

I N=3
≈

1
2


5

9
. sin π


1−

√
3
5

2


 +

8
9

sin
π

2
+

5
9

sin


1 +

√
3
5

2







=
5
9

cos

(
π

2

√
3
5

)
+

4
9

= 0.637061877

7.3.2 Other Gauss-Quadrature formulae

1) Hermite-Gauss: w(x) = e−x2
(a, b) = (−∞,∞)

∞∫

−∞
e−x2

f(x) dx =
N∑

k=1

wkf(xk) +
N !
√

π

2N (2N)!
f (2N)(ξ)

wk =
2N+1N !

√
π

[HN+1(xk)]2

m xk wk

2 ±0.707107 0.886227

3 0.0 1.181636

±1.224745 0.295409



Numerical Integration 11

2) Chebyshev-Gauss Quadrature: w(x) = (1− x2)−
1
2 [a, b] = [−1, 1].

1∫

−1

f(x)√
1− x2

dx =
N∑

k=1

wkf(xk) +
2π

22N (2N)!
f (2N)(ξ)

wk =
−π

T ′N (xk)TN+1(xk)
=

π

N
(weights are all equal).

7.4 Integrating Functions on Infinite Intervals

Consider evaluating integrals of the form

I =

∞∫

0

f(x) dx

If f(x) ∼ x−p as x →∞ then
∞∫

a

x−p dx =
x1−p

1− p
|∞a

exists only if p > 1.

7.4.1 Truncate the Infinite Interval

I =

c∫

a

f(x) dx +

∞∫

c

f(x) dx

= I1 + I2

• Use the asymptotic behaviour of f to determine how large c should be for I2 < ε/2

Eg.

∞∫

0

cosxe−x dx

|I2| =
∣∣∣∣∣∣

∞∫

c

cosxe−x dx

∣∣∣∣∣∣
≤

∞∫

c

e−x dx = e−c

∴ c = − ln(ε/2) = 18.4 ε = 10−8

OR use an asymptotic approximation for I2.

• Evaluate I1 using the standard integration rules.
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7.4.2 Map to a Finite Interval

I =

∞∫

a

f(x) dx where f(x) x→∞∼ x−p

• Choose the map such that x−p dx → dt

Eg. p = 2 : −x1−p = −x−1 = t dx = t−2 dt

x = −1
t

∴ I =

∞∫

a

f(x) dx =

0∫

− 1
a

f

(
−1

t

)
dt

t2

Now as t → 0 f
(− 1

t

) ∼ (− 1
t

)−2 = t2 so integrand is finite

• OR

t = e−x

x = − ln t
⇒

∞∫

0

f(x) dx =

1∫

0

f(− ln t)
t

dt

• OR [0,∞) = [0, S] ∪ [S,∞) and on [0, S] set t = x/S on [S,∞) set t = S/x

7.4.3 Specialized Gauss integration rules for infinite intervals

(a) Gauss-Laguerre Integration: (0,∞) w = e−x

∞∫

0

e−xf(x) dx =
N∑

k=1

wkf(ξk)

∞∫

0

g(x) dx =

∞∫

0

e−x
(
exg(x)

)
︸ ︷︷ ︸

f(x)

dx

(b) Gauss-Hermite integration: (−∞,∞) w = e−x2

∞∫

−∞
e−x2

f(x) dx =
N∑

k=1

wkf(ξk)
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7.5 Adaptive Integration

7.5.1 Adaptive Simpson Integration

I(0) =
h

3
[f0 + 4f3 + f5]

︸ ︷︷ ︸
S2(h)

−h5

90
f (4)(ξ)

f1 f2 f3 f4 f5

• ◦ • ◦ •
← −− →

h

I(0) =
(h/2)

3
{[f0 + 4f2 + 2f3 + 4f4 + f5]}

︸ ︷︷ ︸
S4(h)

− (h/2)5

90

{
f (4)(ξ1) + f (4)(ξ2?)

}

Assume f (4)(ξ) = f (4)(ξ2) ∼ f (4)(ξ) approximately constant.

Substract

0 = S2 − S4 − h5

90
f (4)(ξ)

[
1− 1

25
× 2

]
=

15
16

(
h5

90
f (4)(ξ)

)

∴ h5

90
f (4)(ξ) ' 16

15
(S2 − S4)

∴ |I(0)− S4| ' h5

90
f (4)(ξ)

(
1
24

)
=

1
15
|S2 − S4|

• ◦ • ◦ • I2, I4

is
1
15
|S2 − S4| < TOL ? |S4| YES → DONE

NO
• ◦ • ◦ • ◦ •
| |

is
1
15

∣∣∣∣S2

(
h

2

)
− S4

(
h

2

)∣∣∣∣ < TOL

7.5.2 The Best of Both Worlds – Gauss-Patterson Integration

• Gauss Quadrature Rules obtain the highest accuracy for the least number of function evaluations.

| • • • | | x x • x x |

• Newton-Cotes Formulae allow for automatic and adaptive integration rules because the regular grid allows one to

use all previous function evaluations toward subsequent refinements - the adaptive Trapezium rule is an example

of this.

• ◦ • ◦ •
• The Gauss-Patterson integration rules allow one to build higher order integration schemes which make use of

previous function evaluations in subsequent calculations. These rules have the attractive high order accuracy

typical of Gauss quadrature rules. This is ideal for adaptive integration.

• Patterson, T.N.L. 1968, “The Optimum Addition of Points T Quadrature Formulas”, Math. Comp., 122, p. 847–

856.


