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In this paper we present a short introduction 10 the new field
of control of molecular motion. Our intention is to outline how
the methods and techniques of control theory play a crucial role
in the development of this emerging field, and reciprocally how
Jundamental new problems are motivated by this interaction.

I. INTRODUCTION

A. What Is Molecular Control?

Since the beginning of alchemy one of the primary goals
of chemists has been to stimulate chemical reactions to form
desired products. Traditionally these stimuli were applied
by changing the global thermodynamic variables such as the
temperature and the pressure or by adding the appropriate
combination of reagents to achieve the desired chemical
products. In stimulating such chemical reactions it often
happens that only a certain fraction of the reagents combine
to form the desired products while the remaining reagents
combine to0 form a number of unwanted by products.
Furthermore, there are products that cannot be produced by
varying such global control variables. There has therefore
been ongoing research to find more selective and efficient
ways to manipulate chemical reactions. The possibility of
selective excitation at the molecular scale also provides the
potential to actively probe and determine unknown parts of
the molecular potential energy function.

Neighboring atoms within molecules frequently have net
opposite charges on them (the hydrogen and oxygen atoms
in a water molecule are a typical example), and the dipoles
formed by such pairs of atoms act as microscopic “handles”
on the molecules by which it is possible to excite the
molecules in a desired way using applied electromagnetic
fields. One possible means to control molecular motion or
chemical reactions is to take advantage of the radiative
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coupling and prepare the molecule in selected quantum
states which evolve to the desired products. Although these
new modes of stimuli offer the possibility of more selective
excitation and products, their success depends on being able
to determine the correct field to apply in order to achieve
the desired objective. In addition, care must be exercised
to ensure that the designed field is sufficiently robust to
modeling and inevitable laboratory errors.

The idea of using electric or optical fields to achieve
selective chemistry is not new, and there has been a
great deal of research in this area over the last 30 years.
However, the field designs, which were previously based
on inwition, have been largely unsuccessful. For example,
if there is a need to break a particular bond within a
molecule, then simple intuition would suggest that exci-
tation at the fundamental vibration frequency associated
with that bond could induce a resonance which would
ultimately break the bond. However, due to the coupling
between the bond in question and the remainder of the
molecule, it is difficult to localize the energy imparted to
the molecule within the bond. To overcome this problem
the wave nature of the quantum molecular dynamics needs
to be exploited. The complicated dynamics and quantum
interference structure of the molecule also have to be
incorporated in the field-design process. Some progress has
been made with perturbation theory based field designs
by exploiting quantum wave interference properties of
the molecules. Recently, the recognition that the design
of fields to manipulate quantum molecular systems is a
control theory problem has led to a major advance in this
area [1]-[4]. The novel application of control theory to
molecular motion is the focus of this article.

A comment about the nature of molecular dynamical
equations of motion is appropriate before considering issues
of control. Rigorously, the laws of quantum mechanics
are operative at the molecular scale, and this necessitates
describing the dynamics in terms of Schridinger’s equation
which is a partial differential equation in time and 3s
spatial variables, where s is the number of atoms or
particles involved. Thus modeling alone at the molecular
scale is a challenging task, even though Schrédinger's
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equation is linear in terms of the unknown wavefunction.
In contrast, classical mechanics is typically expressed in
terms of Hamilton's equations of motion and can often be
applied with reasonable accuracy at the molecular scale,
provided the motion describes the movement of the atoms
alone and not their electrons (electron motion is strictly
quantum mechanical, due to the light mass of the particles).
Hamilton’s equations of motion are perhaps simpler since
they involve 6s first order ordinary differential equations,
but they will typically be highly nonlinear and can exhibit
chaotic behavior. At this point, most explorations into
molecular control have considered the quantum mechanical
perspective, and this paper will also follow that line.
Nevertheless, classical analogs of the molecular issues
involved are expected to play an increasingly important
role in the subject.

The balance of the paper is organized as follows. Section
II will give an illustrative case of molecular control to set
the framework of the topic. Section III will address the role
of nonlinear control theory. Sections IV and V deal with
some practical issues and applications of molecular control.
Finally Section VI will summarize some open challenges
presented by molecular control.

II. FrROM OPTIMAL CONTROL TO MOLECULAR CONTROL

The evolution of physical systems is often influenced by
an externally applied control input. Control theory involves
the careful design of such an input to force the system to
evolve in a desired fashion. For example, the dynamics of
a diatomic molecule may be manipulated by an extermnal
laser field that is coupled to the molecule via its dipole
moment. The appropriate choice of this external laser field
can cause the molecule to rotate, vibrate, or dissociate in
a desired fashion. The science of designing such inputs
is the essence of the field of molecular control. Over
the years, and through the work of many researchers,
mathematical techniques have been developed that make
possible the design of control inputs to satisfy desired
design objectives in the best possible way. Currently,
the techniques of optimal control span a wide range of
analytical and computational methods, with many variations
that apply to models described by ordinary differential

equations, partial differential equations, and discrete-event -

systems. An approach that is currently used in molecular
control problems is based on a variational method, which
involves the solution of two coupled boundary-value prob-
lems that can be derived from the quantum description
of the molecular dynamics. The solution of these two
boundary-value problems yields gradient information about
the desired objective, which can be used in a conjugate
gradient search for the optimal control input. We will
outline this type of analysis in the next section when we
describe the control of a diatomic molecule.

Since the recognition that control theory could be applied
to molecular motion, there has been significant progress
in the theoretical design of stimulating fields for molec-
ular systems. Applications of this approach include the
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excitation of vibrational modes of polyatomic molecules,
rotational excitations, and dissociation of molecular struc-
tures [1]-[12]. Control theory has not only been crucial
in the process of designing the required fields, but also in
establishing the limits of what these fields can achieve,

A. Molecular Dissociation: A Case Study

In this section we will use an example to demonstrate
the type of calculations that are involved in a molecular
control problem [1]. The dynamics of a molecular system
is described by a Schridinger equation of the form

ih%—'f = (Ho+ U)¥

where the termn Hp includes a potential energy function
Vo(z) and the Laplace operator, and is called the nominal
Hamiltonian and U is the externally applied laser field, i.e.,
the control input. The state of a quantum system, (z, ),
prescribes a probability density function, [¥(z, t)|?, from
which the statistical information about the physical observ-
ables associated with the quantum system can be calculated.
A problem of practical importance is to determine the
appropriate externally applied control that will steer a
wavepacket, ¥(z, t), about and ultimately dissociate the
molecule. The nominal potential for a typical diatomic
molecule is qualitatively described by a Morse potential
which takes the following form:

Vo(z) = D[1 — e~ 7=%0)]2,

In the neighborhood of the minimum point z¢ the Morse
potential resembles a harmonic potential, while away from
T, the two potentials differ significantly. We first transform
coordinates to an equivalent dimensionless form, where
the scaled spatial variable is denoted by X. The initial
wavepacket is assumed to be a Gaussian:
. 1\ 1 ~(X - Xo)?
¥(X) = (?) iz =P [ ~ 2L? ]

For illustration we take the parameters L = 20, Xop =
6. The target wavepacket is also a Gaussian centered at
Xo = 4. The goal is to design a control input such
that the wavepacket evolves to a state that is as close as
possible to a desired state ¥(X) at a target time T for
which the associated energy is higher than the dissociation
energy of the molecule. The applied control is given by
U = B(X)E(t), in which the molecular dipole coupling
potential is B(X) = X — Xo. Thus the optimal control
procedure seeks to find the time-dependent external field
E(t) that minimizes the difference between the specified
target wavepacket $(X) and the actual final wavepacket
(X, T) while simultaneously minimizing the energy of
the control term B(X)E(t). We use a Lagrange-multiplier
formulation to convert this optimization problem to the
solution of two boundary value problems, which provide
the information necessary to conduct a conjugate gradient

search for a minimum of the cost functional. The results of
this computation are shown in Figs. 1-4.
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Fig. 1. The initial and final wavepackets of a diatomic molecule.

Fig. 1 shows the probability density for the initial and the
final wavepackets. Dissociation is achieved by translating
the wavepacket from 6 to 4, which compresses the bond
and releases it at time T'. The subsequent dynamics shows
that the compressed atoms fly apart to dissociate as desired.
Fig. 2 shows the controlled and uncontrolled potential en-
ergy functions to which the diatomic molecule is subjected.
Notice that the enhanced curvature of the net potential in
the target region provides an explanation for the narrowing
of the final wavepacket as seen in Fig. 1.

Fig. 3 shows a contour plot of (X, t)|? over the space-
time domain. In this figure the evolution of the wavepacket
can be traced from its initial position around Xy = 6
to its final position around 4. Note that the crest of the
Gaussian indicates the average length of the diatomic bond.
See the figure on the cover of this journal. The response
of the wavepacket to the optimal driving field E(t) (see
Fig. 4) can be observed. Initially there is a period of phase
adjustments, which is relatively high in frequency and low
in amplitude. This period is followed by a large low-
frequency pulse which is applied near the end of the time
period. The large peak of E(%) near the end of the time
interval increases the effective curvature of the combined
potential as shown in Fig. 2.

This example demonstrates the use of optimal control
methods to design a control field strategy that achieves
dissociation within the given time interval and which min-
imizes the work performed by E(t) to achieve this goal.
The control and guidance of the wave packet is achieved
by forcing the wave packet in a delicately phased fashion by
means of the applied potential B(X)E(t). The optimal field
E(t) exhibits many interesting features that could not have
been anticipated a priori without such an analysis. This
nonintuitive structure is typical of many successful molec-
ular designs. A key issue is assuring the practical nature of
the control design and this point will be discussed later.
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Fig. 2. The initial and final potentials of a diatomic molecule.

Time
Fig. 3. The time evohtion of |¥(X, t)| for a diatomic molecule.

III. NONLINEAR CONTROL METHODS

There is a significant role for finite dimensional nonlinear
control techniques in the molecular regime. Schridinger's
equation with an external control is a bilinear distributed
parameter system. Nevertheless, the theory of the control
of nonlinear lumped parameter systems is of great value to
molecular control.

For reasons mentioned in Section I, molecular systems
are often modeled classically. This naturally gives rise to
a Hamiltonian control system (i.e., both the drift and the
input vector fields are Hamiltonian). Even when quantum
mechanics is employed, ideas from the control of nonlinear
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lumped parameter systems play a significant role. In fact,
molecular control problems suggest new questions in non-
linear control theory whose solutions ought to be of interest
to a wider audience. We will describe these later in the

paper.

A. Controllability

Perhaps the most important control objective that arises
in molecular dynamics is the problem of the preparation
of a desired final state starting from a given initial one,
i.e, the problem of constructive controllability. For the
sake of greater precision let us first describe how nonlinear
(in fact, bilinear) lumped models arise in the quantum
regime. We first write Schrbdinger’s equation with an
external control and then make a Galerkin approximation.
Explicitly, we make an ansatz, ¥(z, t) = 3, ci(t)di(x)
for the substitution into Schridinger’s equation. Here, the
¢; are typically chosen to be the normalized eigenfunctions
of the field free Hamiltonian, corresponding to eigenvalues,
E;, i=1,.--, N.The eigenvalues E; represent the energy
levels of the molecule in the absence of an external laser
field. In practice, the values of the F;,i = 1,---, N are
obtained either experimentally (via, e.g., spectroscopy) or
numerically from an approximate model for the molecular
potential. The number N depends on the application. Such
finite dimensional models are referred to as N-level systems
in the atomic and chemical physics literature. The so-
called selection rules [13] frequently justify taking only a
finite number of states in the evolution of the molecular
system. Conversely, they also necessitate the inclusion of
intermediate levels, even if there are only two levels which
correspond to chemical events and, therefore, need to be
controlled. For instance, a five-level system has been used
to model the control of selectivity of product formation in
a chemical reaction in [12].
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The foregoing considerations give rise to the following
bilinear control system:

¢ = Ac+ Beu. (1)

The state c is the N-vector consisting of ¢;, i =1, .-+, N.
Typically there is only one control u = ¢(t). The matrix A
represents the reference Hamiltonian iHj, and is diagonal
with entries equal to the energies iEj, j =1, ---, N cor-
responding to the ¢;, 2 = 1, --+ , N, Similarly the matrix
B is i times the matrix representation of the interaction
Hamiltonian (i.e., it contains information about the dipole
coupling). For convenience, we assume that i = 1. Clearly
A and B are skew-Hermitian matrices. Since the vector ¢
evolves on a 2N —1 dimensional sphere, we get an invariant
system evolving on a homogeneous space. We will explain
below what this means [15]. Therefore, its evolution may
be analyzed by passing to the control system describing the
evolution of the corresponding unitary generators:

U = AU +u(t)BU. ()

This is now an invariant system evolving on U(N) (15).

To avoid confusion, we will first record the definition
of controllability (since the nonlinear control literature is
replete with several different variations on this theme).
The controllability of the system (1) means the following:
“Given any initial condition ¢(0) and any other arbitrary
state d there exists: 1) a positive time 7, and 2) an
admissible control function u(¢) [r and u(t) may depend
on both ¢(0) and d], such that under the influence of the
latter the state of ¢(t) of (1), initialized at ¢(0), satisfies
¢(r) = d.” We will now briefly describe, via two-level
systems, the role of passing to (2) for the analysis of the
controllability of (1). This analysis will, we hope, also
clearly explain why matrix commutators play a prominent
role in the analysis of the controllability of (1). Two level
systems are not only simple to analyze, but also have
innumerable applications. Phenomena and devices modeled
as two-level systems include nuclear magnetic resonance,
masers and lasers, and optical pumping. See [13] and [14)
for lucid descriptions of these and several more applications
of two-level systems.

Consider, therefore, a two-level system (1), which has
been initialized at [c;(0), c2(0)] = (¢!, ), with (¢}, &?)
a pair of complex numbers with unit norm. Suppose that
we wish to steer the state of the system to a desired point
(d', d®) € S® in some finite time 7. We first claim that
there is at least one 2 x 2 unitary matrix V which satisfies
V(c!, )T = (d*, d?)T. We construct V as the product
of two unitary matrices UpU}. U, has for its first column
the vector (c!, c¢2)T. The second column can be any unit
norm vector in C2, which along with (¢!, c2)7 forms an
orthonormal basis for C2. The matrix U, is constructed in
exactly the same way with the difference that we replace
(ct, A)T by (d*, d)T. Clearly the V thus constructed has
the desired attribute. The existence of such a V is precisely
what it means to say that the sphere is a homogeneous
space.
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The foregoing analysis shows that we will have estab-
lished controllability of (1) if we can find controls u(t)
which take the comesponding system (2) from its initial
condition, J», to any arbitrary unitary matrix V' in some
finite time. We will restrict ourselves to piecewise constant
controls. For the purposes of assessing controllability, there
is no loss of generality in doing so. Let us therefore consider
solutions to the equation U = AU + k, BU, U(0) = I, on
some finite interval [0, 71). The constant k, represents the
value of the piecewise control on [0, 7;]. The solution to
this differential equation is U(t) = exp t(A + k1 B) ;.

To understand, how matrix commutators arise, we will
express exp (A -+ k1 B) in the form g(t) exp (tA), where
g(2) is yet to be determined. To evaluate g(t) we differenti-
ate exp t(A+k B) with respect to ¢. This yields the matrix
exp t(A-+k1 B)(A+k, B), which equals g(t) exp (tA)(A+
k1B). Likewise differentiating g(t) exp (£A4) with respect
to ¢ yields the matrix ¢/(t) exp (tA) + g(t) exp (tA)A. We
now equate the two to get:

g’ = g exp (tA)(ky B) exp (—tA)
which gives
9 =gki(B+t[4, Bl +--).

We hope that the last equation partially explains the role
played by matrix commutators in the analysis of the con-
trollability of (2) and hence, that of (1). It ought to be
now conceivable (and can indeed be demonstrated) that
if the linear span of A, B and all their iterated matrix
commutators (in other words the Lie algebra generated
by A and B) equals the set of all skew-Hermitian 2 x 2
matrices, then indeed every such desired unitary matrix V'
can be generated by the evolution of (2) under piecewise
constant controls. This is the case even for arbitrary IV, but
demonstrating it requires quite some effort [16). The fact
that the set of NV x N unitary matrices forms what is called
a compact and connected Lie group [17] plays a crucial
role in the proof.
Some remarks are in order at this stage:
* Typically controliability criteria do not explicitly pro-
duce the control which will carry the solutions of (1) or
(2) to the desired final state. The above product of ex-
ponentials formula appears to imply that one could find
the desired control by inverting some matrices. This
is feasible only in the case that all sufficiently often
iterated brackets of A and B are zero. Unfortunately,
unitary groups lie at the opposite end of the spectrum
with respect to this attribute. Therefore, the problem of
explicitly determining controls which drive the state
of (1) from a given initial condition to a desired
terminal condition is both open and of great interest.
Of course, optimal control seeks to do the same, but
what is preferable is a method which employs first
principles (i.e., makes explicit use of the Lie algebra
generated by A and B) and is computationally less
burdensome than optimal control. In particular, the
problem of determining sinusoidal controls which do
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the same is very important, since the external mode of
control in these problems is the laser which generates
an oscillatory field. We should mention that from
the results of {16] it is known that if controllability
can be concluded under the assumption that one is
allowed to use all admissible controls, then one can
conclude controllability under the assumption that one
may use only those controls which are bounded in
amplitude. This is important from a practical point of
view. It is also important in partially justifying the
Galerkin approximation. Indeed, it is known that if the
external field is not too strong and has only certain
frequencies (the correct resonant frequencies) in its
Fourier spectrum, then the probability of exciting the
neglected modes is extremely small, and thus one can
be certain that retaining only the first N modes is quite
accurate (to be accurate the field can be strong but
fOT u(t) dt has to be small). In this regard, we mention
the work of [18] where the control of Schrédinger’s
equation in the weak field limit was studied. In this
limit one obtains a linear control system. Since the
system is linear one can not only algebraically deduce
controllability but also obtain algebraically (i.e., in
closed form) the external field which will produce the
desired transfer of state. It is interesting to note that the
work of [18] obtained, thereby, a field which had only
the correct resonant frequencies. Along the same lines,
the work of [19] addressed the problem of selective
population of quantum states by using only those
fields which had only the correct resonant frequencies
and were bounded in amplitude. It was found that if
one varied the phase of the incident laser field in a
suitable manner (something which is within the realms
of current technology), then one could indeed achieve
the desired objective. It is also noteworthy that in [19]
no use of optimal control theory was made.

The foregoing considerations also apply to more gen-
eral cases of lumped parameter nonlinear control sys-
tems. The matrix commutator now gets replaced by
the Lie bracket of two vector fields. The Lie bracket,
essentially supplies an extra direction of motion. This
point is clearly explained in the survey paper by
Brockett [21]. However, we caution the reader that the
analog of the rank condition described above (called
the reachability rank condition in the literature (20]),
is usually not sufficient to conclude the controllability
of general classes of nonlinear systems. However,
practically all the systems arising in molecular control
belong to that rare class where the reachability rank
condition actually suffices to determine controllability.
As another example we briefly mention the control-
lability of Liouville’s equation which describes the
evolution of the density matrix [22]. The density matrix
is used in situations when there is (statistical) ran-
domness in the Hamiltonian of the molecular problem.
Liouville’s equation also gives rise to a bilinear control
system with the difference that the corresponding A
matrix also belongs to su(N), i.e., it has zero trace
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in addition to being skew-Hermitian. However, since
the state vector in this case does not have a unique
norm we do not obtain an invariant system on a
homogeneous space. This is the only obstruction to
carrying out the above program for Liouville’s equa-
tion. However, it permits us to describe the set of states
that can be. obtained from a given initial condition,
under all possible controls in finite time. Finally, we
note that the controllability of other problems arising
in molecular dynamics and micro(nano)electronics can
also be deduced via rank conditions. For instance,
the controllability of a classically modeled system
can also be deduced via rank conditions due to the
Hamiltonian nature of the problem (under certain other
assumptions). The same circle of ideas also allows us
to analyze and understand some remarkable results on
the control of electron scattering amplitudes (at many
incident energies) in 1-D semiconductor heterostruc-
tures (23].

e In determining the controllability of (1) or (2)
one can spare oneself some calculations by just
determining if the real dimension of the Lie algebra
span{B, [A, B],---} is N? — 1 [24). This is because
in typical applications the only element belonging to
the Lic algebra generated by A and B which has
nonzero trace is A [24]). In [24] use is made of such
calculations to explain certain heuristic results of [12]
on a five level (ie., N = 5) system.

* The reader may wonder why the argument above,
involving the product of exponentials, which motivated
the role of matrix commutators could not have been
made at the level of (1) itself. It certainly could
have. However, by passing to (2) we need verify the
reachability rank condition only at one point of U(N)
(namely, the identity matrix), whereas we would have
had to verify the reachability rank condition pointwise
if only (1) had been employed. There are several
other advantages as well. For instance, the fact that
(2) is an invariant system on a Lie group leads to
the simplification of certain optimal control problems.
Indeed for cost functionals which are quadratic it is
possible to explicitly solve the resulting two point
boundary value problem. This is a direct application
of the results of [25].

B. Tracking as an Alternative to Optimization

Optimal control is the method that has been used most
for the purpose of designing fields to manipulate molecules.
Whilst optimal control is the most flexible (inasmuch as it
is capable of handling several competing objectives), it can
be computationally expensive. Therefore, it is desirable to
explore other techniques which will, at least in some cases,
yield the desired external field.

One such technique is the method of “inverse control”
or the method of exact tracking. The basic idea is to
prescribe a reference track r(t) for some observable of the
molecular system. r(t) is so chosen that if the observable
follows r(t) exactly over [0,T] then at ¢t = T the state
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of the molecular system is where one wants it to be. The
requisite field is obtained by inverting the equations of
motion. Therefore, the method applies equally to classical
and quantum models. The only difference, loosely speaking,
is that in the latter Heisenberg commutators replace Lie
derivatives in the former.

There are two sources of difficulty with the exact tracking
method. First, unlike the situation in traditional engineering
applications, the track r(t) is secondary in importance
1o the problem of achieving transfer of state. Thus there
will typically be no laboratory guidance for choosing the
track. This places a considerable burden on the designer to
come up with a suitable track. If the track is not chosen
carefully the field produced by this method could well
have undesirable characteristics like strong low frequency
components. Second, in most typical problems there are at
least two observables whose behavior must be controlled in
order to achieve the given molecular objective. For instance,
if the goal is to break the stronger of the two bonds in a
triatomic molecule then one not only wishes to pump more
energy into the stronger bond, but also to keep the energy
in the other bond at a minimum. Thus at least two outputs
have to be exactly tracked with just one input. Usually this
problem is difficult.

Various extensions of exact tracking have been proposed
to ameliorate the situation [26], [27]). Among these are
asymptotic tracking of weighted sums of the competing
tracks and various combinations of wracking and optimiza-
tion. The latter approach is closely related to techniques in
chemical process engineering, usually dubbed model pre-
dictive control [28). These methods were tried both in the
classical and quantum regime. One physically interesting
application was to the dissociation of the HF molecule,
and the technique yielded good results. These techniques
were also applied to the more challenging situation of
breaking the stronger of the two bonds in a model linear
rotationless triatomic A-B-C molecule (26}, [27]. Some of
the extensions proposed in (26), [27] are well established in
the nonlinear control literature (e.g., asymptotic tracking).
However, there is still some novelty due to the fact that
these control laws are state feedback laws, and therefore
cannot be used as such in molecular control problems,
where real time feedback is not currently feasible.

IV. PRACTICAL LABORATORY ISSUES OF MOLECULAR
CONTROL: THE NEED FOR ADAPTIVE FEEDBACK

As with all control problems, the goal of molecular
control is to ultimately go into the laboratory and manip-
ulate molecular-scale events, including chemical reactivity.
Almost all molecular optimal control theory studies have
thus far considered open loop control, since the dynamical
events in molecules are occurring at ultrafast time scales,
even down to 10~12-10~1% 5. Thus real time feedback,
as traditionally done in engineering applications, appears
not feasible for molecular control. Nevertheless, the same
basic issues, driving the need for feedback, occur. In par-
ticular, the Hamiltonians for all but the simplest molecules
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Fig. 5. A schematic of an adaptive-learning algorithm apporach
for teaching lasers to control molecules. The algorithm is initiated
by an optimal control estimate eg(t) of the control field, followed
by its laboratory refinement in a computer-controlled sequence of
experiments coupled to a pattern-recognizing learning algorithm.

are imprecisely known, leading to control field designs
of suspicious quality. Second, even in cases where the
Hamiltonian is known to be accurate, solving the control
equations can be a formidable task, especially if several
atoms or particles are involved. Third, even if the latter two
difficulties are surmounted, the actual laboratory realization
of the designed field will have errors of a random and
systematic nature, and the degree of tolerance to such errors
is not fully understood.

Although the above difficulties are serious, there appears
to be a very atiractive way of dealing with these problems.
First, some appreciation of how laboratory control fields are
generated is necessary. Current techniques of optical pulse
shaping operate most effectively in the frequency domain:
an ultrafast raw laser pulse is first Fourier-transformed
into its spectral components, followed by application of
a frequency and/or phase filter, and lastly, an inverse
transform is applied to yield a pulse of desired shape. All of
these operations are performed by passive optical devices,
except the filter. Most importantly, the laboratory procedure
for changing the filter can be implemented, with computer
control, leading to the possibility of creating distinct pulses
at a high duty cycle of perhaps thousands or millions per
second. A canonical single experiment would consist of
a rapid control pulse, followed by an interrogating probe
pulse, to investigate what happened to the molecule. Thus
although direct real time feedback cannot be envisioned
now, an unprecedented number of experiments of this type
could be sequentially performed, to suggest an adaptive
feedback algorithm, as sketched in Fig. 5. Such a learning-
based approach for control has analogs in other areas of
engineering, but the molecular-scale applications may be
unique in terms of the enormous number of independent
experiments that may be performed over a short period of
time in the laboratory.

The ideal mode of operation in learning-based molecu-
lar control would first involve employing various control
theoretical design techniques, as a starting estimate for
the laboratory contro! field. This latter first step may be
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increasingly important in more complex molecular control
situations. At the present time, Jaboratory illustrations of
molecular control learning have not been attempted, but
a number of highly encouraging simulations have been
performed. Most significant are results suggesting a high
tolerance to certain classes of noise and systematic errors
in the laboratory. It is anticipated that adaptive feedback
leamning at the molecular scale will become an essential
component of virtually all practical molecular control ap-
plications in the future [29].

V. OPTIMAL MOLECULAR CONTROL FOR
INVERSION PURPOSES

Historically, the domain of molecular control has been
driven by the desire to manipulate molecular motion, and
especially, chemical reactivity. This still remains as the
central challenge, and results of fundamental significance
may indeed emerge. However, in considering these goals,
as pointed out above, there is typically a serious lack
of information on the underlying Hamiltonian, and in
particular, the intramolecular potential function describing
the interaction among the atoms of the molecule. Control
and inversion theory are closely allied in the overall domain
of systems theory. In the case of chemistry and physics,
a very large fraction of laboratory studies, especially of
a spectroscopic nature, are carried out with the ultimate
aim of inversion, to learn about the molecular potential
functions. Such efforts have been plagued by a number of
difficulties, perhaps the most important one being the lack
of a reliable algorithm to guide the inversion process. Given
the significance of molecular inversion, it is natural to in-
quire whether a variation on the theme of molecular control
might be employed for inversion purposes. A fundamental
issue is to develop an algorithm to guide the process. The
subject is at an early stage, but a promising suggestion
has been put forth, related to the concepts of molecular
tracking and control theory [30]). In tracking, a desired
trajectory is imposed on the molecular observable and
the dynamical equations effectively inverted, to obtain the
control field which will achieve this externally prescribed
trajectory. In the present context, the suggestion is not
to prescribe a priori a trajectory for some observable,
but rather it is to actually monitor the evolution of the
observable in the laboratory, and then use the knowledge
of the initial condition and then perform the inversion
procedure used in the theory of tracking to obtain the
unknown intramolecular potential function. There is only
a loose analogy between these two tracking applications,
as in the case of control, the inversion seeks to find
a time-dependent function u(t), while the Hamiltonian
inversion problem seeks the intramolecular potential Vp(x)
as a function of spatial variables. A specific algorithm
to perform intramolecular potential inversion has been
suggested. Ultimately, a full incorporation of control theory
will be needed, as the real issue is identifying the optimal
sequence of controlled experimental observations for best
extracting the underlying Hamiltonian information. One can
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envision the generation of “smart” or adaptively controlled
spectrometers, whose operation and design are specifically
aimed at inversion. Success in this domain would be of
equal, if not greater, importance than merely achieving
molecular control.

VI. CHALLENGES TO CONTROL THEORY

In the history of control theory, major advances have been
achieved by the search for solutions to problems that pose
significant new challenges, such as those presented by the
space program. Molecular control poses new challenges for
control theory. First, models for the dynamics of molecules
are rich in structure: the approximate classical models are
nonlinear dynamical systems that can be chaotic, while the
more accurate quantum mechanical models increase rapidly
in computational complexity as the number of atoms in the
molecule increases. Second, the characteristic time-scale
of the molecular systems is very small: the controlling
fields for such systems will not be amenable to real time
feedback in response to minor perturbations in the trajec-
tory of the molecule. This is a significant deviation from
the requirements of traditional control designs in which
observation and feedback are fundamental components.
However, as argued above adaptive feedback through a
sequence of experiments is quite possible. Third, in the
design of molecular controliers, knowledge of the molecular
Hamiltonian is often incomplete: Robust controllers will
have to be designed to make them less sensitive to such
uncertainties.

There are some novel problems which arise in nonlinear
control that are motivated by molecular control. The first
is the problem of “motion planning” for invariant systems
with drift on Lie groups. In particular, at the molecular
level, one wishes to study the same problem with restric-
tions on the Fourier spectrum of the input field (this can be
studied via optimal control, but one would like to avoid the
time consuming computation that goes with it—in other
words, we would like to solve this problem from first
principles by making a systematic use of the structure of
the Lie algebra generated by the A and B matrices of
system (1)). A similar question has been studied for driftless
systems (with, of course, more than one control) in [31] in
the context of the path planning problem for mechanical
systems with nonholonomic constraints. We should stress
that the trick, found in the control literature, of effecting
a time-dependent coordinate change to convert the given
system into a driftfree one will not be very valuable in the
molecular control problem. The main obstruction to this
as a systematic technique for the resolution of the above
problem at the molecular level is that there is typically
only one control, and hence, the resultant driftless system
will not be controllable even if the original one was.
Incidentally, this trick is well established in the quantum
mechanics literature (13]. On the other hand, it seems to us
that the main techniques in [31], namely the Wei-Norman
and Magnus expansions, are not inherently limited to the
driftfree case.
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Thus far, the work on molecular controllability theory can
be understood in the traditional engineering control sense
of attempting to identify the degree to which the system
may be steered about, from one arbitrary point to another.
However, in fact, at the molecular scale, such an approach
is overly confining, as the state of the system described
by the wavefunction 1z, t) cannot actually be measured.
Although the initial condition (z, 0) may be known, the
actual observations in the laboratory are of a quadratic
functional of the wavefunction involving an integral over all
spatial coordinates z. Such a functional inherently washes
out much information on the true state ¥(z, t), and it
renders the following physically important controllability
problem: “Determine if every value that an observable
may take, can indeed be achieved via the imposition of a
suitable external laser field.” Surely, a quantum mechanical
system which is controllable in the traditional state space
sense would also be controllable in the sense suggested
here. However, most importantly, even if. a system is
not controllable in the state space sense, it may well
still be controllable in terms of generating true laboratory
observables. Thus a significant challenge is to develop a
controllability framework for actual laboratory observables.
It is conjectured that a wider class of quantum mechanical
systems will be controllable from this physically important
perspective, but the mathematical analysis is likely to be
more complex, due to the additional nonlinearity of the
assessment process.

Another problem is to effectively determine when two
given points in the state space of a nonlinear control
system can be attained from one another, given that the
rank condition fails at isolated points of the state space. In
other words, we seek to determine when these two points
lic on the same “leaf of the foliation determined by the
reachability Lie algebra” [20]. This is particularly important
for classical models of molecular control problems and the
control systems arising in solid-state electronics. Typically
the reachability rank criterion will fail at certain isolated
points of the state space in these problems. Thus this
problem is not trivial. At least for the classical problem it
seems that symmetry considerations will play an important
role in resolving this question.

An interesting problem arises in the context of tracking
multiple objectives exactly. Typically the limitations on
the class of tracks for the second (or more) output are
limited by the zero dynamics of the first and primary output.
For classical systems this likely rules out any interesting
possibilities. However, for quantum systems the associated
“zero dynamics” are infinite dimensional, thus leaving some
interesting scenarios (see [20) for a definition, in the context
of the tracking problem, of *zero dynamics™). At this point,
the problem is to make this notion as precise as possible.

The introduction of concepts and tools from control
theory at the molecular scale is a new field, and ‘already
has raised interesting new issues. Quantum control is rich in
terms of its physical significance, and much is to be gained
by joining the methods of control theory and quantum
physics.
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