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ABSTRACT: The technique of multistage hydraulic fracturing from horizontal wells 
is universally credited with enabling the economical production of hydrocarbon 
resources from shale formations. The method almost always entails the injection of 
fluid through the wellbore with the potential to create hydraulic fractures from 
multiple reservoir entry points, typically clusters of wellbore perforations, that are 
spaced out along the wellbore within a section that is colloquially referred to as a 
“stage”. Arguably the most basic question about this situation is how many 
perforation clusters within a given fracturing stage can be expected to produce 
growing hydraulic fractures. This paper presents a numerical investigation of this 
issue that employs a newly-developed, fully coupled parallel planar 3D hydraulic 
fracturing simulator that features: implicit time stepping, an implicit level set scheme 
to locate the propagating hydraulic fracture fronts that respond to their regimes of 
propagation and enables highly accurate simulations using a very coarse mesh, and 
the capability to dynamically partition the fluid among multiple, simultaneously 
growing hydraulic fractures in parallel, overlapping planes. Our results demonstrate 
the dependence of the energetically preferred number of growing hydraulic fractures 
on the length of the isolated zone, the height of the reservoir, and the relative 
importance of the fluid viscosity. In particular, we show that reservoirs with effective 
height containment and injection strategies that ensure substantial viscous dissipation 
will promote growth of multiple simultaneous hydraulic fractures rather than 
localization to just one or two dominant fractures. 
 
INTRODUCTION 

Multistage hydraulic fracturing from horizontal wells is currently the 
petroleum industry’s most important reservoir stimulation technology; without it 
hydrocarbons from shale reservoirs could not be produced economically (e.g. King 
2010). However, production logging often shows that more than half of perforation 
clusters are non-producing (Miller and Waters 2011).  

This failure to generate uniformly distributed production highlights two issues 
that are currently detrimental to optimal recovery. The first is failure to adapt the well 
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completion strategy in light of variability of reservoir properties, including the in-situ 
stress, along the well (e.g. Baihly et al. 2011). The second is the propensity of 
hydraulic fractures (HFs) to exert stresses on each other thereby suppressing the 
growth of some or most of the HFs attempting to extend from an array of entry points 
such as perforation clusters. This phenomenon, called “stress shadowing”, has been 
studied using multiple fracture models for well over a decade (e.g. Gemanovich et al. 
1997, Olson 2004, Fisher et al. 2004, Abass et al. 2009, Meyer and Bazan 2011).  

These two issues, and their management, are at the core of mechanically-
justified engineering decisions - such as length of each stimulation interval and 
spatial distribution of perforation clusters within the interval - which will have a first 
order effect on the productivity of the well. It is therefore vital to improve on the 
current situation wherein these critical engineering decisions are often made with 
little guidance from models that rigorously capture the essential physical mechanisms 
that determine the impacts of these decisions on HF growth.  

Recognizing the value of simulations that capture the complexity that can be 
generated through the interaction of multiple, simultaneously growing hydraulic 
fractures (e.g. Germanovich et al. 1997, Olson and Dahi-Taleghani 2009, Damjanac 
et al. 2010, Cipolla et al. 2011, Nagel et al. 2011, Meyer and Bazan 2011, Kresse et 
al. 2013, McClure and Horne 2013), a different and complimentary approach has 
recently been developed that uses simple analytical models to clarify the basic 
contributors to the energy balance of a system of multiple, simultaneously growing 
and parallel HFs (Bunger 2013). The analysis is built on the premise is that, given a 
well interval of a certain length with multiple entry points, the number of HFs that 
will actually grow corresponds to the number that minimizes the required energy 
input. The resulting analytical models show how the required energy input depends 
on the number of HFs and how this dependence is affected by HF geometry, fluid 
viscosity and injection rate, mechanical properties of the rock, and perforation 
geometry (Bunger 2013, Bunger et al. In Press). 

The analytical modeling has therefore proven useful for discerning the 
mechanisms that control the overall behavior of the system. But the approach is 
restrictive on both the geometry and the number of coupled phenomena that can be 
considered. Hence there is a need for a new, fully-coupled numerical simulator that 
can systematically test the analytical predictions and that can be progressively 
enhanced to capture increasingly more complex behavior. Such a model can therefore 
be seen as providing bridge between theory and the predictions of design-oriented HF 
simulators that prioritize rapid computation enabled by substantial simplifications of 
the underlying mechanical model, which almost always include a local treatment of 
the elasticity equations according to the so-called pseudo 3D approach (e.g. Meyer 
and Bazan 2011, Kresse et al. 2013). 

As a first step in this reconciliation between theory and numerical simulation, 
this paper presents a comparison between the analytical predictions of Bunger (2013) 
and a newly-developed, fully coupled parallel planar 3D hydraulic fracturing 
simulator. This new simulator features an implicit level set scheme to locate the 
propagating hydraulic fracture fronts that respond to their regimes of propagation and 
enables highly accurate simulations using a very coarse mesh, and the capability to 
dynamically partition the fluid among multiple, simultaneously growing hydraulic 



    Page 3                                           

fractures in parallel, overlapping planes. Consistent with the predictions of Bunger 
(2013), these simulations demonstrate that two factors, substantial dissipation of 
energy through viscous fluid flow and effective containment of height growth, are 
critical to promoting simultaneous growth of multiple hydraulic fractures. 
 
SUMMARY OF ANALYTICAL PREDICTIONS 

Bunger (2013) and Bunger et al. (In Press) discovered that there are 3 critical 
factors that determine the propensity for multiple hydraulic fractures to growth 
simultaneously. These are: 1) HF geometry, 2) perforation pressure loss, and 3) 
dissipation of energy through viscous fluid flow. Hence we can contrast arrays of 
plane strain (2D), radial (penny-shaped), and blade-like (or “PKN”) HFs (see Fig. 1), 
each of which gives strikingly different predicted behavior. For a start, the 2D cases 
always favor growth of one HF regardless of the number of and/or spacing between 
the entry points. Because this geometry is common for modelling but not very 
representative even of idealized HFs in the field, we conclude that 2D simulators will 
overstate the tendency of HFs to localize. 

 

 
 

FIG. 1.  HF geometries, re-drawn based on Bunger (2013). 
 
In contrast, arrays of penny-shaped hydraulic fractures favor growth from all 

perforation clusters as long as viscous dissipation of energy dominates the energy 
dissipation associated with breakage of the rock. Radial fractures will persist until 
their radius is around 0.8 times the spacing, at which point the elastic interaction or 
“stress shadow” effect causes a progressive localization to fewer HFs. If rock fracture 
dominates the energy balance, penny-shaped HF arrays will immediately favor 
growth of a single HF. “Limited entry” techniques (e.g. Howard and Fast 1970, 
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Economides and Nolte 2000) that deliberately increase the energy dissipation at the 
entry points can mitigate this localization until the radius is around 0.2 times the 
spacing. We therefore conclude that factors promoting viscosity-dominated growth 
(large injection rate, large viscosity, stiff rock, and low toughness rock) contribute to 
growth from as many perforation clusters as possible when the HFs are roughly 
penny-shaped.  

For height limited HFs that attain a PKN geometry the behavior is different 
again. Here the model predicts an energetically preferred spacing that results from a 
competition. On the one hand, minimization of the viscous energy dissipation drives 
the system to favor very closely spaced HFs, as was shown for the penny-shaped 
case. On the other hand, the stress shadow energetically penalizes the system when 
the HFs are close together. In the PKN case these competing processes result in an 
energetically-preferred spacing that is around 2.5 times the HF height in the absence 
of perforation losses and can be as little as 1.2 times the HF height with large 
perforation losses. This prediction is supported by previously observed patterns of 
microseismicity in the Barnett Shale (Fisher et al. 2004 as discussed by Bunger et al. 
In Press). 
 
DESCRIPTION OF THE NUMERICAL MODEL 
The numerical model assumes that fractures are propagating within parallel planes 
that are spaced hk apart in a perforation stage of length Z within a pay zone of height 
H (see Fig. 2). The numerical model uses the Implicit Level Set Algorithm (ILSA) 
(Peirce and Detournay, 2008) to model the propagation of fractures with arbitrarily 
shaped boundaries within each of the parallel planes, which are assumed to be 
perpendicular to the minimum principal stress direction. The fractures are assumed to 
propagate in a three dimensional elastic medium at a rate that is sufficiently slow for 
the elastic medium to be in a state of static equilibrium.  

The elastic equilibrium equations are discretized using the displacement 
discontinuity boundary integral method in which the fracture within each plane is 
represented by constant width rectangular elements that are collocated at element 
centers. The Reynolds lubrication equation, expressing the conservation of mass of 
the viscous fluid contained within the crack surfaces of each of the fractures, is 
discretized using a finite volume method, which is also defined with respect to 
quantities sampled at the centers of the rectangular elements. At the periphery of the 
fractures, which may not conform to the structured rectangular mesh, the fracture 
boundaries are represented using a concept of partially filled tip elements that are 
used to define average fracture widths, which are also sampled at element centers.  

The distinguishing feature of this algorithm is its ability to locate the free 
boundaries of the fractures using the asymptotic behavior of the hydraulic fracture 
widths that are applicable at points in the neighborhood of the perimeters of the 
fractures. For the kth fracture the free boundary is located by the following iterative 
process: given initial guesses for each of the fracture boundaries ∂Sk, determine the 
corresponding equilibrating and volume conserving fracture widths wk and fluid 
pressures pf,k, and well-bore fluxes qk  subject to the constraints that the well-bore 
fluxes sum to the total fluid volume pumped and the well-bore pressures are the same 
across the array. In the ribbons of elements that are completely filled with fluid and, 
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which share at least one side with a partially filled tip element, use the trial width 
values to estimate the distance to the free boundary by inverting the applicable tip 
asymptotic behavior (Detournay, 2004); use these estimates of the distances to the 
free boundaries as initial conditions for the eikonal equations |∇Tk(x, y)| = 1, whose 
level set curves Tk(x, y) = 0 define the free boundaries. The fracture boundaries are 
then moved to the curves Tk(x, y) = 0 and the iterative process is repeated until 
convergence is achieved. The algorithm uses the multi-scale hydraulic fracture tip 
asymptotic solution (Detournay, 2004) and thus automatically captures the different 
types of propagation regimes with relatively coarse meshing of the fracture planes. 
This iterative procedure is performed for each of the fractures in each of the fracture 
planes. The algorithm is described in more detail in Peirce and Bunger (In Review). 

 

 
FIG. 2.  Geometric configuration of the experimental perforation stage of length Z 
within a pay zone of height H in which hk is the fracture spacing. After Peirce and 
Bunger (In Review). 

 
 

NUMERICAL RESULTS 
Radial Growth in Toughness Dominated Regime 
Firstly we simulate simultaneous injection into 5 entry points spaced uniformly at 30 
m so as to cover a 120 m interval of the wellbore. Injection parameters are chosen so 
that the total simulation time satisfies (e.g. Detournay 2004) 

 
 

where Qo is the volumetric injection rate and 1) 12µ µʹ′ =  for the fluid viscosity µ , 
2) 2/ (1 )EE νʹ′ = −  for the Young’s modulus E and Poisson’s ratio ν , and 3) 

1/2(32 / ) IcK Kπʹ′ = for the rock fracture toughness IcK . This constraint provides a 
convenient definition of the so-called toughness dominated regime for radial HFs, 
which can be considered the case wherein the energy dissipated due to rock breakage 
far exceeds the energy that is dissipated through viscous fluid flow (e.g. Lecampion 
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and Detournay 2007).  Consistent with this constraint, the following parameter values 
are chosen for this example: 

 
 

Fig. 3a shows a snapshot of the 5 HFs when the outer 2 have reached a radius 
of about 30 m. The inner HFs are clearly suppressed. Fig. 3b shows that the inner 
HFs grow uniformly with the outer HFs until their radius is about 0.15 times they 
spacing. Localization then commences favoring the outer HFs while the inner HFs 
attain a radius around 0.2 times the spacing and do not grow any further over the 
duration of the simulation. 
 
Radial Growth in Viscosity Dominated Regime 
As in the previous case, here we simulate simultaneous injection into 5 entry points 
spaced uniformly at 30 m so as to cover a 120 m interval of the wellbore. However, 
here the injection parameters are chosen so that the total simulation time satisfies 
(e.g. Detournay 2004) 

 
 

This constraint provides a convenient definition of the so-called viscosity dominated 
regime for radial HFs, which can be considered to be the case in which the energy 
dissipated due to rock breakage is far exceeded by the energy that is dissipated 
through viscous fluid flow (e.g. Lecampion and Detournay 2007). Within this 
constraint, the following parameters are chosen for this example: 

 
 
Fig. 4a shows a snapshot of the 5 HFs when the outer 2 have reached a radius 

of about 30 m. The inner HFs somewhat suppressed in their growth, although not 
nearly as strikingly as in the toughness dominated case. In fact, as shown in Fig. 4b, 
even after the outer HFs begin to be favored when the radius attains about 0.3 times 
the spacing, the inner HFs continue to grow and only trail the outer HFs by about 
20% when the radius of the outer HFs is approximately equal to the spacing. Hence 
we observe that for viscosity dominated HFs the localization commences later than in 
the toughness dominated regime (here “later” means that the radius attains a larger 
value relative to the spacing). Furthermore the localization is less pronounced once it 
commences so that the array grows in a much more uniform manner than it does in 
the toughness dominated regime. 
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a) 

 
b) 
FIG. 3.  Radial toughness regime. a) 5 hydraulic fractures with contours 
corresponding to opening. b) Evolution of the radius of the fractures normalized by 
the spacing between them. 
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a) 

 
b) 
FIG. 4.  Radial viscosity regime. a) 5 hydraulic fractures with contours 
corresponding to opening. b) Evolution of the radius of the fractures normalized by 
the spacing between them. 
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Blade-like Growth with Stage Length Greatly Exceeding HF Height 
Here we simulate simultaneous injection into 7 entry points spaced uniformly at 20 m 
so as to cover a 120 m interval of the wellbore. Here we ensure growth that is strictly 
in the viscosity dominated regime by setting the rock fracture toughness to be small 
and the viscosity and pump rate to be relatively large. The set of parameters for this 
example are otherwise chosen as: 

 
 

The main difference between this case and the radial viscosity-dominated case 
is there here we have imposed the condition that the injection takes place within a 12 
m wide strip of low stress so that height growth is naturally limited (although finite in 
contrast to the original models of Perkins and Kern 1961 and Nordgren 1972). 

Fig. 5a shows a snapshot of the 7 HFs when they have reached a length of 
about 40 m. In this case the array is nearly uniform; the inner HFs trail behind in 
terms of length by only a few percent as shown in Fig. 5b. We observe, then, that 
height constraint promotes extensive uniform growth when the spacing is on the order 
of 2 times the HF height. 

 
Blade-like Growth with Stage Length Equal to HF Height 
The previous case showed the propensity of height limited HFs to extensively grow 
simultaneously in the viscosity dominated regime as long as their separation is large 
enough relative to their height. In contrast, we finally simulate 5 HFs with a uniform 
spacing of 5 m so as to cover a 20 m interval within a 20 m high zone of low stress 
that limits height to approximately the same value. We ensure growth that is strictly 
in the viscosity dominated regime by setting the rock fracture toughness to zero. The 
set of parameters for this example are otherwise chosen as:  

 
 

Fig. 6a shows the suppression of the inner HFs, consistent with a number of 
similar simulation results (e.g. Gemanovich et al. 1997, Olson 2004, Fisher et al. 
2004, Abass et al. 2009, Meyer and Bazan 2011). However, somewhat surprisingly 
the suppression of the inner HFs can be mitigated, as shown in detail by Peirce and 
Bunger (In Review). Using the same pumped volume as that in the uniformly spaced 
array shown in Fig. 6a but with the entry points placed at z=0,3.5,10,16.5, and 20 m 
instead, we obtain a completely different HF growth pattern as shown in Fig. 6b. 
Hence we find that specific non-uniformly spaced arrays can promote multiple 
simultaneous HF growth. In this example, as pointed out by Peirce and Bunger (In 
Review), the fracture surface area shown in Fig. 6b exceeds the fracture surface area 
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in Fig. 6a by about 50%. If primary hydrocarbon recovery scales with surface area, 
then recovery rates could be improved by as much as 50% through modification of 
the entry-point locations. 

 
DISCUSSION 
The overall contrasting behaviors are: 1) growth of only the outer HFs in the array for 
toughness dominated radial hydraulic fractures and for uniformly-spaced arrays of 
PKN hydraulic fractures, 2) growth of all HFs in an array for radial growth in the 
viscosity dominated regime until the radius is 0.5-1 times the spacing, 3) persistent 
growth of multiple HFs for arrays of PKN fractures that are either spaced more 
widely than their height or that are strategically non-uniformly spaced according to 
the method of interference fracturing proposed by Peirce and Bunger (In Review).  

The observations from these numerical experiments are consistent with the 
analytical predictions of Bunger (2013) with respect to the critical role of viscosity 
and geometry on the propensity for multiple simultaneous HF growth. Pressure loss 
through the perforations has not yet been implemented in the simulator so its role, as 
predicted by Bunger et al. (In Press), cannot yet be tested through numerical 
experiments with this simulator.  

The simulations do, however, provide insight to the importance of the end 
effects of the array. That is, the array is not strictly uniform as in the analytical model 
of Bunger (2013) and Bunger et al. (In Press), but instead the outer HFs experience a 
different stress state than the inner HFs because they have one side that is not 
subjected to any stress shadow. In the case of widely-spaced PKN HFs the impact is 
that the outer HFs grow a few percent more rapidly than the inner HFs; from the 
perspective of estimating overall behavior this is arguably a negligible impact. For 
the radial viscosity-dominated and the short PKN array the end effects apparently 
determine which HFs are favored by localization, but the basic prediction of Bunger 
(2013) of the presence and timing of localization is supported.  

From the perspective of overall behavior, the only variation from the 
analytical predictions of Bunger (2013) is relatively subtle and is found in the radial 
toughness-dominated case. Bunger (2013) predicts immediate localization and 
Bunger et al. (In Press) show that this immediate localization can be mediated by 
perforation losses such that all HFs can grow to a radius around 0.2 times the spacing. 
However, the numerical model shows an early period where all HFs grow until the 
radius becomes 0.1-0.2 times the spacing in the absence of perforation losses. 
Furthermore, as pointed out by Bunger (2013), the analytical model cannot discern 
whether localization will favor growth of 1 or 2 HFs. The numerical experiments 
indicate localization to 2 HFs rather than 1. The dominant factor in this 2 way 
partitioning of fluid rather than strict localization to a single HF is probably driven by 
the small but finite contribution of viscous dissipation for the numerical simulations 
in the toughness dominated regime. This small contribution is ignored by the 
analytical model. However, including it in order to better predict the nature of 
localization to 1 versus 2 HFs generally and early-time localization in the radial 
toughness-dominated cases specifically should be relatively straight forward and will 
comprise a useful extension of these research efforts. 
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a) 

 

 
b) 

FIG. 5.  Height limited hydraulic fractures with spacing larger than the 
height. a) 7 hydraulic fractures with contours corresponding to opening. b) Evolution 
of the radius of the fractures normalized by the spacing between them. 
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a) 

 
b) 
 
FIG. 6.  Height limited hydraulic fractures with spacing smaller than the height. a) 
Uniformly spaced HFs. b) Non-uniformly spaced HFs after Peirce and Bunger (In 
Review). 
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CONCLUSIONS 
The basic conditions that promote or suppress multiple simultaneous HF growth from 
arrays of entry points (i.e. perforation clusters) along horizontal wells are critical for 
design. Recent analytical models (Bunger 2013, Bunger et al. In press) are aimed at 
providing basic insights into this issue, while, on the other hand, design-oriented 
numerical models (e.g.  Damjanac et al. 2010, Cipolla et al. 2011, Nagel et al. 2011, 
Meyer and Bazan 2011, Kresse et al. 2013, McClure and Horne 2013) are concerned 
with demonstrating details of the complexity that can characterize the problem. Here 
we present a new numerical model that aims at bridging the gap between theory and 
simulation. This fully-coupled, parallel planar 3D model has been used here to 
perform numerical experiments testing the predictions of Bunger (2013), namely that 
multiple simultaneous growth will be promoted by large viscous dissipation and 
height constraint. Both of these overall predictions of the theory are supported by the 
numerical experiments. Furthermore, we have observed some behaviors related to 
toughness-dominated HFs with small but finite viscous dissipation, as well as 
systems with 2 growing HFs, could be of practical importance and should be 
considered in future theoretical developments. Finally, we present an example 
showing that the complicated nature of systems of multiple HFs can lead to surprising 
results and unexpectedly simple strategies for promoting simultaneous growth that 
entail moderate perturbations to the locations of the perforation clusters. 
 
ACKNOWLEDGMENTS 

The authors appreciate the support of the International Engineering Foundation, the 
University of Pittsburgh Center for Energy, and the Natural Sciences and Engineering 
Research Council of Canada (NSERC). 
 
REFERENCES 
Abass, H. H., Soliman, M. Y., Tahini, A. M., Surjaatmadja, J., Meadows, D. L., and 

Sierra, L. (2009). Oriented fracturing: A new technique to hydraulically fracture 
an openhole horizontal well. Proceedings SPE Annual Technical Conference and 
Exhibition, New Orleans, LA, USA. SPE 124483. 

Baihly, J. D., Malpani, R., Edwards, C., Han, S. Y., Kok, J. C. L., Tollefsen, E. M., 
and Wheeler, C. W. (2010). Unlocking the shale mystery: How lateral 
measurements and well placement impact completions and resultant production. 
Proceedings SPE Tight Gas Completions Conference, San Antonio, Texas, USA. 
SPE 138427. 

Bunger, A. P. (2013). Analysis of the power input needed to propagate multiple 
hydraulic fractures. Int. J. Solids Struct., 50, 1538–1549. 

Bunger, A. P., Zhang, X., and Jeffrey, R. G. (In Press). Constraints on simultaneous 
growth of hydraulic fractures from multiple perforation clusters in horizontal 
wells. Soc. Pet. Eng. J. 

Cipolla, C., Weng, X., Onda, H., Nadaraja, T., Ganguly, U., and Malpani, R. (2011). 
New algorithms and integrated workflow for tight gas and shale completions. 
Proceedings SPE Annual Technology Conference and Exhibition, Denver, 
Colorado, USA. SPE 146872. 



    Page 14                                           

Damjanac, B., Gil, I., Pierce, M., Sanchez, M., van As, A., and McLennan, J. (2010). 
A new approach to hydraulic fracturing modeling in naturally fractured 
reservoirs. Proceedings 44th U.S. Rock Mechanics Symposium, Salt Lake City, 
Utah, USA. ARMA 10-400. 

Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable 
rocks. Int. J. Geomechanics, 4(1), 1–11. 

Economides, M. and Nolte, K., eds. (2000). Reservoir Stimulation. John Wiley & 
Sons, Chichester UK, 3rd ed. 

Fisher, M. K., Heinze, J. R., Harris, C. D., Davidson, B. M., Wright, C. A., and Dunn, 
K. P. (2004). Optimizing horizontal completion techniques in the barnett shale 
using microseismic fracture mapping. Proceedings SPE Annual Technology 
Conference and Exhibition, Houston, Texas, USA. SPE 90051. 

Germanovich, L. N., Ring, L. M., Astakhov, D. K., Shlyopobersky, J., and 
Mayerhofer, M. J. (1997). Hydraulic fracture with multiple segments II: 
Modeling. Int. J. Rock Mech. Min. Sci., 34(3-4), 472. 

Howard, G. and Fast, C., eds. (1970). vol. 2. Henry L. Doherty Fund, SPE, New 
York. 

King, G. E. (2010). Thirty years of gas shale fracturing: What have we learned? 
Proceedings SPE Annual Technical Conference and Exhibition, Florence, Italy. 
SPE 133256. 

Kresse, O., Weng, X., Gu, H., and Wu, R. (2013). Numerical modeling of hydraulic 
fractures interaction in complex naturally fractured formations. Rock Mechanics 
and Rock Engineering, 46(3), 555–568. 

Lecampion, B. and Detournay, E. (2007). An implicit algorithm for the propagation 
of a plane strain hydraulic fracture with fluid lag. Computer Meth. Appl. Mech. 
Eng, 196(49–52), 4863–4880. 

McClure, M. W. and Horne, R. N. (2013). Discrete Fracture Network Modeling of 
Hydraulic Stimulation: Coupling Flow and Geomechanics. Springer Briefs in 
Earth Sciences. Springer, New York. 

Meyer, B. and Bazan, L. (2011). A discrete fracture network model for hydraulically 
induced fractures-theory, parametric and case studies. Proceedings SPE 
Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, 
Texas, USA. SPE 140514. 

Miller, C. and Waters, G. (2011). Evaluation of production log data from horizontal 
wells drilled in organic shales. Proceedings SPE North American 
Unconventional Gas Conference and Exhibition, The Woodlands, Texas, USA. 
SPE 144326. 

Nagel, N., Gil, I., Sanchez-Nagel, M., and Damjanac, B. (2011). Simulating hydraulic 
fracturing in real fractured rocks - overcoming the limits of pseudo3D models. 
Proceedings SPE Hydraulic Fracturing Technology Conference and Exhibition, 
The Woodlands, Texas, USA. SPE 140480. 

Nordgren, R. (1972). Propagation of vertical hydraulic fractures. J. Pet. Tech., 253, 
306–314. (SPE 3009). 

Olson, J. E. (2004). Predicting fracture swarms – the influence of subcritical crack 
growth and the crack-tip process zone on joint spacing in rock. The initiation, 



    Page 15                                           

propagation, and arrest of joints and other fractures, , J. W. Cosgrove and 
T. Engelder, eds., Geological Society, London, vol. 231, 73–87. 

Olson, J. E. and Dahi-Taleghani, A. (2009). Modeling simultaneous growth of 
multiple hydraulic fractures and their interaction with natural fractures. 
Proceedings SPE Hydraulic Fracturing Technology Conference and Exhibition, 
The Woodlands, Texas, USA. SPE 119739. 

Peirce, A. and Detournay, E. (2008). An implicit level set method for modeling 
hydraulically driven fractures. Computer Meth. Appl. Mech. Eng, 197, 2858–
2885. 

Peirce, A. P. and Bunger, A. P. (In Review). Interference fracturing: Non-uniform 
distributions of perforation clusters that promote simultaneous growth of 
multiple hydraulic fractures. Soc. Pet. Eng. J. pre-print available at: 
http://hdl.handle.net/2429/45492. 

Perkins, T. and Kern, L. (1961). Widths of hydraulic fractures. J. Pet. Tech., Trans. 
AIME, 222, 937–949. 

 
 
 


