\[x = 3 \]
define variable \(x \) to be 3

\[x = [1 \, 2 \, 3] \]
set \(x \) to the \(1 \times 3 \) row vector \((1, 2, 3)\)

\[x = [1; \, 2; \, 3] \]
set \(x \) to the \(3 \times 1 \) vector \((1, 2, 3)\)

\[A = [1 \, 2; \, 3 \, 4] \]
set \(A \) to the \(2 \times 2 \) matrix \[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]

\[x(2) = 7 \]
change \(x_2 \) to 7

\[A(2,1) = 0 \]
change \(A_{21} \) to 0

\[3 \times x \]
multiply each element of \(x \) by 3

\[x + 3 \]
add 3 to each element of \(x \)

\[x + y \]
add \(x \) and \(y \) element by element

\[A \times x \]
product of matrix \(A \) and column vector \(x \)

\[A \times B \]
product of two matrices \(A \) and \(B \)

\[x \times y \]
element-wise product of vectors \(x \) and \(y \)

\[A^3 \]
for a square matrix \(A \), raise to third power

\[\cos(A) \]
cosine of every element of \(A \)

\[\sin(A) \]
sine of every element of \(A \)

\[x' \]
transpose of vector \(x \)

\[A' \]
transpose of vector \(A \)

\[A(2:12,4) \]
the submatrix of \(A \) consisting of the second to twelfth rows of the fourth column

\[A(2:12,4:5) \]
the submatrix of \(A \) consisting of the second to twelfth rows of the fourth and fifth columns

\[A(2:12,:) \]
the submatrix of \(A \) consisting of the second to twelfth rows of all columns

\[A([1:4,6],:) \]
the submatrix of \(A \) consisting of the first to fourth rows and sixth row

\[[A \, B; \, C \, D] \]
creates the matrix \[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\] where \(A, B, C, D \) are block matrices (blocks must have compatible sizes)

\[\text{rand}(12,4) \]
\(12 \times 4 \) matrix with uniform random numbers in \([0, 1)\)

\[\text{zeros}(12,4) \]
\(12 \times 4 \) matrix of zeroes

\[\text{ones}(12,4) \]
\(12 \times 4 \) matrix of ones

\[\text{eye}(12) \]
\(12 \times 12 \) identity matrix

\[\text{eye}(12,4) \]
\(12 \times 4 \) matrix whose first 4 rows are the \(4 \times 4 \) identity

\[\text{linspace}(1.2, 4.7, 100) \]
row vector of 100 equally spaced numbers from 1.2 to 4.7

\[\text{diag}(x) \]
matrix whose diagonal is the entries of \(x \) (other elements are zero)

\[\text{diag}(x,n) \]
matrix whose diagonal is the entries of \(x \) on diagonal \(n \) (other elements are zero)

\[\text{sum}(x) \]
sum of the elements of \(x \)
\(A \backslash b \) returns the solution \(x \) to \(Ax = b \)
\(A^{-1} \) returns the inverse of \(A \)
\(\text{rref}(A) \) returns the reduced row echelon form of \(A \)
\(\text{det}(A) \) returns the determinant of \(A \)
\(\text{norm}(A) \) returns the (operator) norm of \(A \)
\(\text{cond}(A) \) returns the condition number of \(A \)
\(\text{length}(A) \) returns the larger of the number of rows and number of columns of \(A \)
\(\text{norm}(x) \) returns the norm (length) of a vector \(x \)
\(\text{vander}(x) \) returns the Vandermonde matrix for the points of \(x \)
\(\text{polyval}(a,x) \) returns the values of the polynomial \(a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n \) at the points of \(x \)
\([Q R] = \text{qr}(A,0) \) returns the matrices \(Q \) and \(R \) in the \(QR \) factorization of \(A \)
\(\text{nextpow2}(N) \) calculates the next power of 2 of \(N \)
\(\text{fft}(f,N) \) FFT transform of the vector \(f \) using \(N \) points (pads \(f \) with zeros if it has fewer than \(N \) elements)
\(\text{polyval}(A) \) returns the coefficients of the characteristic polynomial of \(A \)
\(\text{roots}(a) \) returns the solutions to \(a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0 \)
\([V D] = \text{eig}(A) \) returns the matrix \(V \) whose columns are normalized eigenvectors of \(A \) and the diagonal matrix \(D \) of corresponding eigenvalues
\(\text{plot}(x,y,'bo') \) plots the points of \(y \) against the points of \(x \) using blue dots
\(\text{plot}(x,y,'r-') \) plots the points of \(y \) against the points of \(x \) using red lines
\(\text{semilogy}(x,y,'bo') \) plots \(y \) against \(x \) using a logarithmic scale for \(y \)
\(\text{axis}([-0.1 1.1 -3 5]) \) changes the axes of the plot to be from \(-0.1\) to \(1.1\) for the \(x \)-axis and \(-3\) to \(5\) for the \(y \)-axis
\(\text{hold on} \) puts any new plots on top of the existing plot
\(\text{hold off} \) any new plot commands replace the existing plot (this is the default)
\(\text{plot3}(x,y,z,'bo') \) plots the points of \(z \) against the points of \(x \) and \(y \) using blue dots
\(\text{for} \ k = 1:10 \ldots \text{end} \) for loop taking \(k \) from \(1 \) to \(10 \) and performing the commands \ldots for each