Google PageRank

Suppose we have a "world wide web" consisting of 4 web sites.

\[
P = \begin{bmatrix}
0 & 0 & 1/3 & 0 \\
1/2 & 0 & 0 & 1/3 \\
1/2 & 0 & 0 & 0 \\
0 & 0 & 1/3 & 0
\end{bmatrix}
\]

links out of:
- node 1: 2
- node 2: 0
- node 3: 3
- node 4: 1

Idea: Start at some node; do a random walk according to the matrix \(P \). If there is a limiting state, the probabilities of each node in that limit state can be used as a measure of importance of that node. That is:

- Set some \(x_0 \);
- Compute \(P^n x_0 \) for large \(n \);
- Is there a limit?
- Can the limit be found using the power method?

To ensure that this limit exists and it is fast to compute, we will need to modify the matrix \(P \).

(1) Let's replace \(P \) with a stochastic matrix — need to do something with column #2.
Replace \(P \) with
\[
S = \begin{bmatrix}
0 & \frac{1}{4} & \frac{1}{3} & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{3} & 1 \\
\frac{1}{2} & \frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{3} & 0
\end{bmatrix}
\]

Using MATLAB:
(a) \(\lambda = 1 \) is the dominant eigenvalue
(b) \(\mathbf{v}_1 = [0.32, 0.81, 0.36, 0.32]^T \) is the corresponding eigenvector

So the ranks of each node are the entries of \(\mathbf{v}_1 \) resp.

Better yet, normalize \(\mathbf{v}_1 \) s.t. its entries add up to 1.

Another example:
\[
S = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

\(|\lambda_1| = |\lambda_2| = |\lambda_3| = 1 \).

So, no dominant eigenvalue.
To resolve: use **DAMPING**:
- create a matrix \(Q \), the same size as \(S \) s.t. all entries of \(Q \) are identical and \(Q \) is a stochastic matrix
That is:

$$Q = \begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix}$$

Therefore, \(\lambda = 1 \) is a dominant eigenvalue of \(G \); the corresponding eigenvector has positive entries. We use these entries as the ranks of each node.

3. Define a damping factor \(\alpha \) in \([0, 1]\).

4. Define the "Google" matrix

$$G = \alpha S + (1-\alpha) Q$$

5. Then repeat the method with \(G \) instead of \(S \).

Note:

1. \(G \) is a stochastic matrix

2. Each entry of \(G \) is positive. Provide \(\alpha \ll 1 \).