Complex vector spaces

\[\mathbb{C}^n = \{ z = [z_1 \ldots z_n] : z_j \in \mathbb{C} \} \]

- All basic properties of \(\mathbb{R}^n \) generalize to \(\mathbb{C}^n \) after replacing real scalars with complex scalars.

\[z = [z_1 \ldots z_n] ; w = [w_1 \ldots w_n] ; \text{se} \mathbb{C} \]

\[z + w = [z_1 + w_1 \ldots z_n + w_n] \]

\[\bar{z} = [\bar{z}_1 \ldots \bar{z}_n] \]

Define \(\bar{z} = [\bar{z}_1 \ldots \bar{z}_n] \), the complex conjugate of the vector \(z \).

Need to change the defn of the inner product: For \(z, w \) in \(\mathbb{C}^n \),

\[\langle w, z \rangle = \bar{w}_1 z_1 + \ldots + \bar{w}_n z_n \]

Why do we need to do this change?

Recall: For \(x \in \mathbb{R}^n \), \(\langle x, x \rangle = \|x\|^2 \)

Want "this" to hold for \(z \in \mathbb{C}^n \):

\[\langle \bar{z}, z \rangle = \bar{z}_1 z_1 + \bar{z}_2 z_2 + \ldots + \bar{z}_n z_n = \|z\|^2 \]

\[= 1\|z_1\|^2 + 1\|z_2\|^2 + \ldots + 1\|z_n\|^2 \]

\[= \|z\|^2 \]
Some consequences

1. For $s \in \mathbb{C}$, $z, w \in \mathbb{C}^n$,
 $\langle sz, z \rangle = s^2 \langle w, z \rangle$
 $\langle w, sz \rangle = s \langle w, z \rangle$

2. $\langle w, z \rangle = \langle z, w \rangle$

3. $\langle w, z \rangle = \overline{w}^T z$
 $= [\overline{w}_1 \ldots \overline{w}_n] [\begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}]$

4. $\|z\|^2 = \sum_{j=1}^{n} |z_j|^2$

5. Recall: for $x, y \in \mathbb{R}^n$,
 \[\langle x, Ay \rangle = \langle A^T x, y \rangle. \]
 What about $z, w \in \mathbb{C}^n$,
 A a complex matrix
 (i.e. $A = [a_{ij}]$; $a_{ij} \in \mathbb{C}$)
 \[\langle w, Az \rangle = (\overline{w}^T A) z \]
 \[= (A^T \overline{w})^T z \]
 \[= (A^T \overline{w})^T z \]
 \[= \langle \overline{A}^T w, z \rangle \]

Define: $A^* := \overline{A}^T$ (adjoint of A)
Then, we have
\[\langle w, A z \rangle = \langle A^* w, z \rangle \]
for all \(w, z, A \) compatible.

Example:
\[A = \begin{bmatrix} 1 & 1+2i & 3 \\ i & 2 & 1 \end{bmatrix} \]

For every \(w \in \mathbb{C}^2, z \in \mathbb{C}^3 \), we have
\[\langle w, A z \rangle = \langle A^* w, z \rangle, \]
where
\[A^* = \begin{bmatrix} 1 & -i \\ 1-2i & 2 \\ 3 & 1 \end{bmatrix} \]

MATLAB:
- \(i = \text{sqrt}(-1) \)
- Matlab handles complex numbers seamlessly.
- \(A^\dagger = \text{adjoint (i.e. } A^\top) \)
- \(A^\dagger = \text{transpose (} A^\top) \)

Orthonormal basis

Recall: Given a vector space \(V \), \(\{e_1, \ldots, e_n\} \) is a basis if:
- \(x \) spans \(\{e_i\} \) is \(V \), and
- \(\{e_1, \ldots, e_n\} \) is linearly independent.
Ex: \{ (1), (1') \} and \\
\{ (0), (1) \} are both bases for \(\mathbb{R}^2 \).

Def: A basis \(\{ q_1, q_2, \ldots, q_n \} \) is an orthonormal basis for \(V \) if
* \(\langle q_i, q_j \rangle = 0 \) for \(i \neq j \)
* \(\langle q_i, q_i \rangle = 1 \) for all \(i \)

Ex: \(\{ (1), (1') \} \) is not orthonormal.
* \(\{ (1), (0) \} \) is an orthonormal basis for \(\mathbb{R}^2 \).
* \(\{ (1/\sqrt{2}), (1/\sqrt{2}) \} \) is an orthonormal basis for \(\mathbb{R}^2 \).

To verify:
* \(\langle (1/\sqrt{2}), (-1/\sqrt{2}) \rangle = 0 \)
* \(\| (1/\sqrt{2}) \| = 1 \).

Ex: \{ e_1, \ldots, e_n \} is the standard basis of \(\mathbb{R}^n \).
Let \(\mathbf{v} = (v_1, v_2, \ldots, v_n) \) be an orthonormal basis for \(V \).

On the other hand, \(\mathbf{v} \) is a basis for \(\mathbb{R}^n \). Thus, any orthonormal basis for \(\mathbb{R}^n \) is also an orthonormal basis for \(V \).

Orthogonal basis for \(\mathbb{R}^n \) is not true.

\[\{ \mathbf{v}_1, \mathbf{v}_2 \} \] is an orthogonal basis for \(\mathbb{R}^2 \), but not for \(\mathbb{R}^3 \). On the other hand, \(\mathbf{v} \) is not a basis for \(\mathbb{R}^3 \).

Remark: Recall that all vectors in \(\mathbb{R}^n \) are also in \(V \).

However, since \(\mathbf{v} \) is orthonormal, we can solve for each \(c_i \) as follows.

\[\mathbf{a} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n \]

In general, to find \(c_i \), we need to solve:

\[\begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \mathbf{a} \]

Let \(\mathbf{v} \in V \) be arbitrary.