Observe: The matrix \(P \) that we constructed in our last lecture is NOT a proper stochastic matrix. Therefore, we'll modify it to guarantee that such a limit exists and is fast to compute.

Step 1: Replace \(P \) with a proper stochastic matrix \(S \) by:

\[
S = \begin{bmatrix}
0 & \frac{1}{4} & \frac{1}{3} & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & 1 \\
\frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{3} & 0
\end{bmatrix}
\]

Let's ask again:
- Is there a limit of \(S^n x_0 \)?

Use MATLAB: \(\lambda = 1 \) is the dominant eigenvalue (i.e. \(|\lambda_2| < 1 \) for all other eigenvalues).

To find a limit \(\mathbf{v} \) we can find it using the power method...

MATLAB \(\Rightarrow \mathbf{v}_1 = \begin{bmatrix} 0.32, 0.81, 0.36, 0.32 \end{bmatrix}^T \)

- eigenvector corresponding to \(\lambda = 1 \).

A better convention: normalize \(\mathbf{v}_1 \) s.t. its entries add up to 1. \(\Rightarrow \)

\[\mathbf{v}_1 = \begin{bmatrix} 0.18, 0.44, 0.20, 0.18 \end{bmatrix}^T. \]

Paper rank: \(\frac{1}{2} \) rank of 1.
Another example:

\[S = P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \text{stochastic matrix} \]

\[S \]

and \[|\lambda_1| = |\lambda_2| = |\lambda_3| = 1 \]

so, no dominant eigenvalue; thus our method does NOT work.

To resolve: use DAMPING

- Create a matrix \(Q \), same size as \(S \), st. all entries of \(Q \) are identical & \(Q \) is stochastic.

In our case:

\[Q = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \]

- Pick a "damping factor" \(\alpha \in [0, 1] \)
- Define the "Google matrix" as

\[G = \alpha S + (1 - \alpha) Q \]

with damping factor \(\alpha \).

Notes:

1. \(G \) is a stochastic matrix and each entry of \(G \) is positive.
Thus \(\lambda = 1 \) is the dominant eigenvalue of \(G \); corresponding eigenvector has positive entries, giving positive PageRank to every site.
(2) We define the PageRank of a site as the corresponding entry of the eigenvector \(\tilde{v}_i \) of the eigenvector \(\lambda = 1 \), normalize so that its entries add up to 1.

(3) Since all other eigenvalues are strictly less than 1 in magnitude, we can use the power method to compute PageRank.

Singular Value Decomposition (SVD) III. 7.1-3

Idea: Can we generalize "diagonalization" to arbitrary (non-square, ...) matrices?

Why is this important?

(1) If \(A = S D S^{-1} \) (diag. as before), then
\[
A^k = S D^k S^{-1}, \quad k \geq 0
\]
and also for \(k < 0 \) if
\[
D_{ij} = \lambda_{ij} \neq 0 \quad \forall j.
\]

(2) If \(A \) is unitarily diagonalizable (e.g., when \(A \) is Hermitian), then
\[
\|A_{\text{op}}\| = \max \{ |\lambda_j| \}
\]
where \(\lambda_j \) are the eigenvalues of \(A \).

(3) If \(A \) is diagonalized, then
\[
\text{rank}(A) \neq \# \text{ non-zero eigenvalues}.
\]
SVD: generalize these to arbitrary matrices

The "formula":

\[A = U \Sigma V^* \]

\(U \) is \(m \times n \); unitary
\(\Sigma \) is \(n \times n \); "diagonal"

\(V \) is \(n \times n \); unitary

Example:

\[
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]

"diagonal" for non-square matrices

How do we find \(U, \Sigma, V \) given \(A \)?

Let \(A \) be \(m \times n \).

Proposition 1: All eig. values of \(A^*A \) are non-negative (and strictly positive if \(A \) is invertible).

Proof: \(A^*A \) is positive semi-definite:

\[v^*A^*A v = \lambda v^*v \]

\[\Rightarrow \lambda \geq 0 \]

\[\langle Av, Av \rangle = \lambda \langle v, v \rangle \geq 0 \]

\[\lambda \geq 0 \]

Note: if \(A \) is invertible, \(Av \neq \vec{0} \), so \(\lambda > 0 \).