Examples

1. A is n × n; invertible. What is N(A)?
 Sol: Solve
 \[A^{-1}(A\mathbf{x}) = 0 \]
 \[\Rightarrow A^{-1}(A\mathbf{x}) = A^{-1}0 \]
 \[\Rightarrow \mathbf{x} = 0. \]
 \[\Rightarrow N(A) = \{0\} \]

2. \[B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}; \ N(B) = ? \]
 \[x_3 = s; \quad x_1 = 0; \quad x_2 = 0 \]
 \[\Rightarrow N(B) = \{ s \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; s \in \mathbb{R} \} = \text{Span} \{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \} \]

3. In general, to find N(A), just solve the homog. eqn \[A\mathbf{x} = 0. \]

Ex.
\[C = \begin{bmatrix} 1 & 3 & 3 & 10 \\ 2 & 6 & -1 & -1 \\ 1 & 3 & 1 & 4 \end{bmatrix}; \ N(C) = ? \]

Sol:
\[C \sim \ldots \sim \text{ref}(C) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[x_2 = s; \quad x_4 = t \quad \text{(free variables)} \]
\[x_1 + 3s + t = 0 \Rightarrow x_1 = -3s - t \]
\[x_3 + 3t = 0 \Rightarrow x_3 = -3t \]
\[N(C) = \{ s \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -3 \end{bmatrix}; s, t \in \mathbb{R} \} = \text{Span} \{ \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -3 \end{bmatrix} \} \]
Notes:

1. \(R(A) \subseteq \mathbb{R}^m \)

2. \(A = [a_1 | a_2 | \ldots | a_n] \)

where \(a_j \in \mathbb{R}^m \) are the columns of \(A \). Then, for \(x \in \mathbb{R}^n \)

\[
A x = [a_1 | a_2 | \ldots | a_n] [x_1 \\
x_2 \\
\vdots \\
x_n] = x_1 a_1 + x_2 a_2 + \ldots + x_n a_n
\]

\(\Rightarrow R(A) = \text{Span}\{a_1, a_2, \ldots, a_n\} \)

= "column space" of \(A \)

Then, to find a basis for \(R(A) \), find the largest set of linearly independent columns of \(A \)

We know how to do this! Find the pivot columns of \(A \)!

Ex: Consider the matrix \(C \) from our previous example. Find a basis for \(R(C) \).

\[
\text{ref}(C) = \begin{bmatrix}
1 & 3 & 0 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Pivot col. are col #1 & col #3

\(\begin{bmatrix}1 \\
3 \\
-1
\end{bmatrix} \) is a basis for \(R(C) \).

Note: \(\dim (R(C)) = 2 \)
Def: \(\text{dim}(\mathbb{R}(A)) \) is called the rank of \(A \), and denoted by \(\text{rank}(A) \).

Facts:
1. \(\text{rank}(A) = \# \text{ pivots in } \text{ref}(A) \).
2. Let \(A \) be \(m \times n \). Then
 - \(\text{rank}(A) \leq \min\{m, n\} \)
 - \(\text{dim}(\mathbb{N}(A)) = n - \# \text{ pivots} \)

\[\Rightarrow \text{dim}(\mathbb{N}(A)) = n - \text{rank}(A) \]

3. Let \(\text{ref}(A) := U \). Then there exists an invertible matrix \(L \) s.t. \(A = LU \).

 Then \(A^T = U^T L^T \).

 Claim: If \(L \) is invertible, so is \(L^T \).

 Exercise: prove this claim.

Thm: \(\mathbb{R}(A^T) = \mathbb{R}(U^T) \).

Remark: \([\text{ref}(A)]^T \neq \text{ref}(A^T) \).

Proof of the Thm:
\[
\mathbb{R}(A^T) = \{ A^T x : x \in \mathbb{R}^m \} = \{ U^T L x : x \in \mathbb{R}^m \}
\]
Q: Do we have some \mathbb{R}^m such that $L^T x : x \in \mathbb{R}^m$?

i.e., can we find, for every $y \in \mathbb{R}^m$, an $x \in \mathbb{R}^m$ such that $y = L^T x$?

A: Yes. In fact, given $y \in \mathbb{R}^m$, let $x = (L^T)^{-1} y$.

Therefore $L^T x = L^T (L^T)^{-1} y = y$.

Therefore $\mathbb{R}(A^T) = \{ U^T y : y \in \mathbb{R}^m \} = \mathbb{R}(U^T)$.

Ex: Let C be as before. Find $\mathbb{R}(C^T)$.

Sol: $\mathbb{R}(C^T) = \mathbb{R}(U^T)$ where

$$U = \text{ref}(C) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\Rightarrow U^T = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$

$$\Rightarrow \mathbb{R}(C^T) = \text{span} \left\{ \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix} \right\}$$

A basis for $\mathbb{R}(C^T)$.
Ex: Let
\[
A = \begin{bmatrix}
1 & 3 & 4 & 5 & 1 \\
2 & 2 & 2 & 2 & 2 \\
1 & 2 & 4 & 7
\end{bmatrix}
\]
(a) What is \(\text{rank}(A) \)?
(b) \(\dim(N(A)) \)? \(\dim(R(A)) \)?
\(\dim(N(A^T)) \)? \(\dim(R(A^T)) \)?
(c) \(x_4 = s \); \(x_5 = t \) ... exercise.
(d) \(\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \} \).
(e) \(\text{ker}(A^T) = \text{ker}(A) \cup \text{ker}(A) \).

Sol: First, calculate \(\text{rref}(A) \):
\[
\begin{bmatrix}
1 & 0 & 0 & -2 & -5 \\
0 & 0 & 0 & 5 & 18 \\
0 & 0 & 0 & 0 & 12
\end{bmatrix}
\]
(a) \(\text{rank}(A) = 3 \)

\(\text{ker}(A) = \text{ker}(A) \cup \text{ker}(A) \).
Pf: exercise.