Ch. 1 Linear Equations

What is a linear eqn?

\[y = 3x + 2 \] → linear
\[y = 3x^2 + 2 \] → not linear
\[y = 3x - 2 = 0 \] → linear
\[x + y + 2xy = 5 \] → not linear

An equation \(f(x_1, x_2, \ldots, x_n) = b \) is linear iff \(f \) is a polynomial of degree 1.

In general, a linear eqn with \(n \) variables is of the form
\[a_1x_1 + a_2x_2 + \ldots + a_nx_n = b, \quad (*) \]
\((a_j, b) \in \mathbb{R} \)

Here: \(x_j \) are variables
\(a_j, b \) are coefficients.

Next, rewrite (*) using matrix notation:
\[
\begin{bmatrix}
 a_1 & a_2 & \cdots & a_n \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
\end{bmatrix}
\]

Any linear equation with \(n \) variables is of this form.

Next: A bunch of linear equations that have the same solution (i.e., we need to solve them simultaneously) is called a system of linear equations or a linear system.
Ex: \[3x_1 + 2x_2 + 3x_3 = 0 \]
\[x_1 - x_2 - 4x_3 = 1 \]

\[
\begin{bmatrix}
3 & 2 & 3 \\
1 & -1 & -4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\]

let's consider a specific case:
\[m = n = 1. \]

\[\mathbf{A} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} \]

Case 1: \(a \neq 0 \)
Then \(x = \frac{b}{a} \) is the unique solution.

Case 2: \(a = 0 \)
(a) \(b \neq 0 \) \(\Rightarrow 0 = b \) (not true)

So, no solution.

(b) \(b = 0 \) \(\Rightarrow \) any \(x \in \mathbb{R} \) is a solution
So, infinitely many solutions.

Question 1: How many solutions can a linear system have?
One more special case:

\[m = n = 2 \]

\[\begin{align*}
\begin{align*}
& a_{11} x_1 + a_{12} x_2 = b_1 \\
& a_{21} x_1 + a_{22} x_2 = b_2
\end{align*}
\end{align*} \tag{1} \tag{2}
\]

\[q_{22} x_1 - a_{12} x_2 = 0 \tag{3} \]

\[(a_{22} a_{11} - a_{12} a_{21}) x_1 = a_{22} b_1 - a_{12} b_2 \]

Case 1: \[a_{22} a_{11} - a_{12} a_{21} \neq 0 \]

\[\begin{align*}
\begin{align*}
x_1 &= \frac{a_{22} b_1 - a_{12} b_2}{a_{22} a_{11} - a_{12} a_{21}} \\
x_2 &= \frac{-a_{21} b_1 + a_{11} b_2}{a_{22} a_{11} - a_{12} a_{21}}
\end{align*}
\end{align*} \]

Case 2: \[a_{22} a_{11} - a_{12} a_{21} = 0 \]

(a) If \[a_{22} b_1 - a_{12} b_2 \neq 0, \]
 then \[\boxed{\text{No Solution}} \]

(b) If \[a_{22} b_1 - a_{12} b_2 = 0, \]
 then \[\boxed{\text{Infinitely many solutions}} \]